Java Arrays, Part 2

* Multiple-Dimensional Arrays
* Type Parameters

* Array Lists

* Array Algorithms

Two-Dimensional Arrays

« So far, every array we have seen has a single index

* A single index works well for many applications, but
not for representing 2-Dimensional data

* Instead, we can declare that an array has multiple
dimensions:

enum ChessPieces { Empty, Pawn, Rook, Knight, Bishop, Queen, King }

final int ROWS = 8§;
final int COLUMNS = 8§;
ChessPieces[] [] chessboard = new ChessPieces [ROWS] [COLUMNS];

Matrices

« A mathematical matrix can be represented as a 2D array:
double[][] matrix = new double[15][17];

* You can then create a method for matrix multiplication:
public static double[] []
matrixMultiply (double[][] ml, double[][] m2) {
if (m1[0].length != m2.length) {
// different sizes, cannot multiply
'
double[] [] result =
new double[ml.length] [m2[0].length];
result[0] [0] = ...

» The number of rows of a matrix m is m.length. The number of columns is
m[0].length

Neighboring Elements

 When a two-dimensional array is representing properties of a
two-dimensional object (e.g. a picture), it is sometimes useful
to be able to compute the indices of neighboring elements

* Given the origin is at 0,0 in the upper left, for the element at |, |

- the element above it is at i-1, |
- the element to the left is at |, j-1
- the element below it is at i+1, j
- the element to the right is at i, j+1
* An exercise for you: give the positions of the elements at the

upper left corner, upper right corner, lower left corner, and
lower right corner

Multi-Dimensional Arrays

* Java supports arrays with any number of

dimensions:
double[] [] [] cube =
new double[10][10][10];
cube[9][9][9] = 3.1415;
double[] [][][] spaceAndTime = ...

e These work t
arrays

ne same as two-dimensional

Non-Rectanqgular Arrays

* A two-dimensional array in Java is really an array of arrays
* The sub-arrays may all have different sizes:
String[][] a = new Stringl[5][];
// lengths will be 1, 4, 7, 3, 6
for (int 1 = 0; 1 < 5; 1++) {
ali] = new Stringl[(1 * 3) % 7 + 1];
h
e Such arrays are occasionally useful
- but are not common.

Type Parameters

 When describing a sample implementation of the
Arrays.copyOf method, we used someType to represent
the type of the array that was being copied

* This is actually useful in real programs:

- when a type T, such as an array, stores elements of another
type U, we can say that T is parametrized over U

* The type equivalent of a variable is a type parameter

« Arrays are built-in to Java and the type of the array
element is part of the Java syntax, but when we create
other collection types we will parametrize them

Type Parameters: Example

* ArrayList is a parametrized collection type
(Java.util.ArrayList)

* Type parameters are written in angle brackets. Here we
declare a variable x to be an ArrayList containing strings:

ArraylList<String> x =
new ArraylList<String> () ;

* in creating this new object, we need both new and ()

 Java is clever enough to figure out the second type
parameter, so it can be omitted:

ArraylList<String> x = new ArrayList<>();

Type Parameters: Objects Only

* A type parameters can only be an Object type, we
cannot use int, double, char, boolean as type
parameter

 Because of this, an Object type has been defined
In Java for each of the basic types: Character,
Boolean, Byte, Short, Integer, Long, Float, Double

 These object types can be used as type
parameters:

ArrayList<Double> x = new ArrayList<>();

Using the Object equivalents of
the basic types

» Because these object types are built-in to Java, Java can
automatically convert between the basic types and their equivalent
object types:

Boolean t = true;
1f (t) A

« As you know, object variables are references to the memory where
the object value is actually stored

* The process of putting a basic type into an object is called boxing

 Java provides auto-boxing and auto-unboxing, so programmers in
general don't have to think about the distinction between, e.qg. int
and Integer

- except that only Integer can be used as a type parameter!!!

Array Lists

« Arrays are very convenient, and use an intuitive syntax supported by Java

 However, the length is fixed
- if we want to change the length, we have to copy the array

» ArraylList is a collection type that is designed to be similar to arrays, but:
- grows on demand
- has additional methods that provide convenient functionality for programmers

» ArrayList access does not have the convenient Java syntax that arrays have, and
is slightly slower, so programmers often still choose to use arrays even though
ArrayLists offer more functionality

 Just as in arrays and strings, the first index in an ArrayList is O

 Just as with arrays and strings, ArrayLists can be used as parameter types and
method return types:

public static ArrayList<String> convert (ArrayList<Integer> a) {

Array List methods: add

* ArrayList.add(value) adds value to the end of the
array list, extending the array list

* ArrayList.add(index, value) adds the value at the
given index, moving out of the way all the
elements with that index and higher

* soifan array list x has 1, 7, 33, 42, the call
X.add(2, 25) changes x to have 1, 7, 25, 33, 42

 Whereas for the same array list x with 1, 7, 33, 42,
X.add(999) changes x to have 1, 7, 33, 42, 999

Array Lists: other methods

 all examples are with x having 1, 2, 3
* ArrayList.size() returns 3, the number of elements
* ArrayList.get(index) returns the value at that index: x.get(2) returns 3

« ArraylList.set(index, value) is like the assignment of an array element:
after x.set(0, 55), x has 55, 2, 3

* ArrayList.remove(index) removes the value at the given index,
moving the other elements to fill the gap

- after x.remove(l), x has 1, 3 and x.size() returns 2

« Copying array lists is accomplished by creating a new array list,
giving the old one as parameter:

ArrayList<String> myCopy = new ArraylList<String> (oldCopy);

Array Lists: enhanced for

 The enhanced for loop works with
ArrayLists, and in general, with all Java
collection types

ArrayList<Double> x = new ArrayList<>();

for (Double e: x) {

total += e;

Comparison of
Arrays, Strings, ArrayLists

array.length, String.length(), ArrayList.size()

O is always the first index

a[n], String.charAt(n), ArrayList.get(n)

aln] = value; ArrayList.set(n, value);

* variable size: arrays need an additional variable,
ArrayLists do it naturally

* adding and removing elements: only in ArrayList

Array Algorithms

* \We have already seen a few array algorithms

- printing elements with separators (demonstrated in
class)

* Most of these algorithms work equally well with
arrays and array lists

- In general, we will refer to arrays unless specifically
talking about ArrayList

» Refer to the book (section 6.3) for a more
comprehensive list; only a few presented here

Array Algorithms:
Linear Search

 There are many cases when we want to look through all of an array to find something

* If you imagine the elements of the array stretched out in a line, and starting from
element O to the last element, this is a linear search

 There are many forms of linear search, but imagine we just want to find a specific
value:
public static boolean contains(int[] a, 1int v) {
for (int x: a) {
1f (v == x) {

return true;

¥

return false;

Array Algorithms:
Inserting or Removing Elements

* If we have enough room in the array, and want to move elements out of the way so we can insert a new
value, we can do so. Note that we have to move elements from the end of the array:

// the first inUse elements of a are in use. insert v at insertPos

// this code does not handle the case where the array needs to be resized

public static int insert (String[] a, int inUse, int insertPos, String v) {
int copy = inUse;

while (copy >= insertPos) { // move higher elements out of the way

alcopyl = alcopy - 11;

COpPYy—=7
}
alinsertPos] = v; // now 1nsert the element
return inUse+1; // return the new size

t

* remove is the same, but we must copy elements from low to high indices
- exercise: take a minute to write the code for remove

* the ArrayList add and remove methods do all this

- and also resizing the array, if add needs more room

Array Algorithms:
Swapping Elements

* If you want to swap two elements of an array, you need a
temporary variable:

int[] a =
int x = ...
int y = ...

// now swap al[x] and aly]

int temp = al[x];
alx] = alyl;
aly] = temp;

 The temporary variable is needed because we have to save the
value of a[x] before we can store the value of a[y] into it

Array Algorithms:
Sorting

* Sorting an array means ordering its elements from low to
hight

* Java already has a method
Arrays.sort (a) ;

« \We can also sort a partly-filled array:

Arrays.sort(a, 0, currentSize);

* ArrayList.sort (null) is also provided

- the null parameter is a sentinel to request sorting according to
the type's natural order

- a different parameter may specify a different sort order

Summary

* Multi-dimensional arrays are arrays of arrays

- the sub-arrays may have different lengths, but
usually all have the same length

 collection types are parametrized on specific
Object types

- each basic type has a corresponding Object type
- and Java handles the conversion automatically

* Array lists have all the features of arrays but also
automatically extend and shrink to fit the contents

* Arrays, loops, and methods from the Java standard
library let us write many interesting and useful
programs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

