Java Arrays

* Java Arrays
* Java References and Equality
 Enhanced for Loops.

Strings and Characters

* \We have seen that each string has zero or
more characters

- String hello = “hello world” has 11 characters

* Characters in a string are indexed beginning
with index O

» Strings have a length given by String.length()
- e.g. hello.length()
* The last valid index is String.length() - 1

Strings, Characters, and
Seqgquences

We can say that a string is a sequence of characters

”n '

* in a sequence, order matters: “abc” is different from “bca”, “cab”,

i ”n {

acb”, “bac”, and “cbha”

* in a string, this sequence is immutable: we cannot change part of a
string

- but we can build a new string, e.g. by concatenation, substring, or any
combination of these

 we may have a use for a sequence of integers, e.g. 1, 2, 3
« or doubles, e.g. 3.14, 2.718, 1.41

* just as we can loop over the characters of a string, we may want to loop
over the elements of such a sequence

and it might be nice if the sequence is mutable

Java Arrays

 An array is a mutable sequence of values of a given type

- every element of the array has the same type, e.q. int, double,
String, boolean, ...

- we can change the value at a given index
- we cannot change the length of the array

« Arrays are declared using a square bracket notation, and
Initialized with the keyword new

int myNumbers[] = new int[10];

String myNames[] = new String[3];
 Method parameters can be arrays:

public static voild main(String[] arguments) {

Array Initialization

 If you know the values that you want to have
In an array when you declare it, you can
specify them in the initialization:

double mathConstants][] = { 3.14, 2.718,
1.41 };

- In this case, new IS not nheeded

 when new IS used, the array values are
automatically initialized to a default value, e.qg.
O for an int array, 0.0 for an array of doubles

Array Elements

» Array elements can be used like any variable:

public static void main(Stringl[] a) A
if (a.length > 0) {
System.out.println(“first arg: “ + a[0]);

}
 this means we can also assign to them:

int numbers[] = new int [100];
numbers[0] = 17;
numbers[99] = 32;
* and, like any variable, use the value in expressions
if (numbers[7] > numbers[6]) ...
numbers[i] = numbers[i-1] + 10;
* The first index is 0, just as for characters in strings

Looping over Array Elements

for (int 1 = 0; 1 < a.length; 1++)
System.out.println(afli]);

I
* the first index is O
* the last index is a.length - 1
- this is the same as for the index of characters in a string

* SO an array of 5 elements has elements at indices
0,1,2, 3,and 4

Array Storage in Memory

WiEmOrY/storage

A declaration such as

boolean x[] = new boolean[3]; X121

does three things: =11

%[0

* it allocates (reserves) storage (memory)
for an array of 3 boolean values

* it allocates storage for a variable x

int x[3]

 and has x refer to storage for the array

- the parts of memory that have been allocated
(reserved) for this example are shown in green

 really, x is a kind of number (a pointer)
that refers to the first location in memory
where the array values are stored

Array References

 Because an array variable stores a
reference, two variables can refer to
the same underlying array:

int al[] = 4{ 1, 2, 3, 4 };
int a2[] = al;

a2 [3] = 55;

1f (al[3] == 55) |

 the condition of this if Is true!

SO an assignment of an array reference
Is different from copying the array

* Array.copyOf allocates new space In

Array Copy

 When we want to copy an array, we do so

explicitly:

int all] = { 1, 2, 3, 4 };

int a2[] = Arrays.copyOf(al, al.length);
az [3] = 55;

if (al[3] == 55) {

now, the condition of this if is false

memory for the copy of the array, and
returns the reference (pointer) to the new
array

Arrays.copyOf

* Arrays.copyOf takes two
parameters: an array a and a length n

* if n == a.length, the entire array is
copied

* If n < a.length, the first n elements of
a are copied

* if n > a.length, an array of size nis
created, and the first a.length
locations are copied from a

- the remaining locations are initialized
with a default value, e.g. O for int arrays

Understanding Arrays.copyOf

 the result of Arrays.copyOf is of a type that depends on
the type of the argument
- for now we will write this as someType
public static someTypel]
copyOf (someType[] a, int n) {

someType result|[] = new someTypel[n];
for (int 1 = 0; 1 < a.length && 1 < n;
i++) |
result[i1] = al[i];

}

return result;

}

* new allocates storage for the new array and initializes all
the elements to the default value

* the loop re-initializes the first n, or a.length, elements of
the new array

More about References

* Just like an array variable, a String variable is a reference to
memory allocated to store the characters of the string

- and the length

* Becauses they are references, sl == s2 compares whether
sl and s2 refer to the same underlying memory

 and String.equals IS used to compare the contents of the
strings: the lengths and the actual characters

* in Java, both arrays and Strings are Objects

* All Object values in Java are references to the memory
allocated to store the values of the object

 So the == comparison tells us whether two objects are the
very same, that is, whether they refer to the same memory,
while the Object .equals method may give us a more
meaningful comparison

- may, because comparing object contents is not always
meaningful

Partially Filled Arrays

* Arrays are fixed size

 If the data we want to store in the array
has size n (where n is not fixed), we can:

- allocate an array as large as the largest
possible value of n

- at any given time, only use the first n
elements of the array

 we usually have a variable to keep track of
the current value of n

* since every array location has a value,
array locations n through a.length-1 store
values, but these are values we do not us

Partially Filled Arrays: Example

int numLines = 0;
final int MAX LINES = 1000;
String lines[] = new String[MAX_LINES];

while (in.hasNext () && numLines < MAX LINES) A

lines[numLines++] = in.next ();

}

e at the end, linesFromUser has the number of
lines the user entered, and
lines[0..linesFromUser-1] has the actual lines

 we don't worry about the remaining elements

 when declaring arrays of fixed size, it is a good
Idea to use a constant as the fixed size

this constant can be used in the loop condition

Bounds Errors and
Buffer Overflow

In the previous example, suppose MAX LINES
was a small number, and we didn't test for it Iin
the loop

eventually, we might try to store a value In
lines[numLines] when numLines >= lines.length

this Is an error

In Java, such an error throws an exception

- In other languages, it may overwrite memory
unrelated to the array: a buffer overflow

- in such languages, buffer overflow is hard to detect
and may cause serious problems

- see Random Fact 6.1 in the textbook
In Java, negative indices also throw exceptions

Enhanced For Loop

* It is very common to want to loop over all the elements
of the array

* In the special case where we:

- are only reading these elements (not assigning to them), and
- don't need the loop index,

there is a special syntax, called the enhanced for loop

* again, we use someType to stand in for the type of the
array elements:
for (someType e: a) {
// inside the loop, e is a local variable

// assigning to e does not change the array element!

}

* If the array has 0 elements, the body of the loop is
never executed

Enhanced For Loop: Syntax

for (type-of-the-array-element name-of-local-
variable-holding-the-element : array) {

the type of the array element must match the
types of the elements of the array

the name of the local variable is up to the
programmer

the array is usually a variable, but could be an
expression such as the result of a call to
Arrays.copyOf

 The parentheses and colon are required

 The index of the element is not available in the
body of the loop -- if it IS needed, use a
conventional for loop with an explicit index

Example:
Finding the Maximum Value

 Suppose we are given an array of double
numbers, and want to find the largest

double al[] = ...
double max = a[0];

for (double element: a) A

1f (element > max) A

max = element;

}

» at the end of the loop, max has the value
of the largest element of the array

Summary

* Arrays are objects that can hold a fixed number of
values of a given type in a specific sequence

* Arrays are mutable: assigning to an array element
changes the value in the array

al0] = “hello world”;

* The first index is always O

 array.length is the number of values, and array.length -
1 is the last index

* new allocates memory to hold the values of an array
(or any object)

* Arrays.copyOf copies contents of arrays (or we can
write a for loop)

 The enhanced for loop creates a new variable for each
array element and makes it available inside the loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

