
 1

Java Arrays

● Java Arrays
● Java References and Equality
● Enhanced for Loops.

 2

Strings and Characters

● We have seen that each string has zero or
more characters
– String hello = “hello world” has 11 characters

● Characters in a string are indexed beginning
with index 0

● Strings have a length given by String.length()
– e.g. hello.length()

● The last valid index is String.length() - 1

 3

Strings, Characters, and
Sequences

● We can say that a string is a sequence of characters
● in a sequence, order matters: “abc” is different from “bca”, “cab”,

“acb”, “bac”, and “cba”
● in a string, this sequence is immutable: we cannot change part of a

string
– but we can build a new string, e.g. by concatenation, substring, or any

combination of these
● we may have a use for a sequence of integers, e.g. 1, 2, 3
● or doubles, e.g. 3.14, 2.718, 1.41
● just as we can loop over the characters of a string, we may want to loop

over the elements of such a sequence
● and it might be nice if the sequence is mutable

 4

Java Arrays

● An array is a mutable sequence of values of a given type
– every element of the array has the same type, e.g. int, double,

String, boolean, ...
– we can change the value at a given index
– we cannot change the length of the array

● Arrays are declared using a square bracket notation, and
initialized with the keyword new

int myNumbers[] = new int[10];

String myNames[] = new String[3];

● Method parameters can be arrays:
public static void main(String[] arguments) { ...

 5

Array Initialization

● If you know the values that you want to have
in an array when you declare it, you can
specify them in the initialization:

double mathConstants[] = { 3.14, 2.718,
1.41 };

– in this case, new is not needed
● when new is used, the array values are

automatically initialized to a default value, e.g.
0 for an int array, 0.0 for an array of doubles

 6

Array Elements

● Array elements can be used like any variable:

public static void main(String[] a) {

 if (a.length > 0) {

 System.out.println(“first arg: “ + a[0]);

 }

}

● this means we can also assign to them:

int numbers[] = new int [100];

numbers[0] = 17;

numbers[99] = 32;
● and, like any variable, use the value in expressions

if (numbers[7] > numbers[6]) ...

numbers[i] = numbers[i-1] + 10;
● The first index is 0, just as for characters in strings

 7

Looping over Array Elements

for (int i = 0; i < a.length; i++) {

 System.out.println(a[i]);

}

● the first index is 0
● the last index is a.length - 1

– this is the same as for the index of characters in a string
● so an array of 5 elements has elements at indices

0, 1, 2, 3, and 4

 8

Array Storage in Memory

● A declaration such as

boolean x[] = new boolean[3];

does three things:
● it allocates (reserves) storage (memory)

for an array of 3 boolean values
● it allocates storage for a variable x
● and has x refer to storage for the array

– the parts of memory that have been allocated
(reserved) for this example are shown in green

● really, x is a kind of number (a pointer)
that refers to the first location in memory
where the array values are stored

 9

Array References

● Because an array variable stores a
reference, two variables can refer to
the same underlying array:

int a1[] = { 1, 2, 3, 4 };

int a2[] = a1;

a2 [3] = 55;

if (a1[3] == 55) { ...

● the condition of this if is true!
● so an assignment of an array reference

is different from copying the array

 10

Array Copy

● When we want to copy an array, we do so
explicitly:
int a1[] = { 1, 2, 3, 4 };

int a2[] = Arrays.copyOf(a1, a1.length);

a2 [3] = 55;

if (a1[3] == 55) { ...

● now, the condition of this if is false
● Array.copyOf allocates new space in

memory for the copy of the array, and
returns the reference (pointer) to the new
array

 11

Arrays.copyOf

● Arrays.copyOf takes two
parameters: an array a and a length n

● if n == a.length, the entire array is
copied

● if n < a.length, the first n elements of
a are copied

● if n > a.length, an array of size n is
created, and the first a.length
locations are copied from a
– the remaining locations are initialized

with a default value, e.g. 0 for int arrays

 12

Understanding Arrays.copyOf

● the result of Arrays.copyOf is of a type that depends on
the type of the argument
– for now we will write this as someType
public static someType[]

 copyOf(someType[] a, int n) {

 someType result[] = new someType[n];

 for (int i = 0; i < a.length && i < n;

 i++) {

 result[i] = a[i];

 }

 return result;

}

● new allocates storage for the new array and initializes all
the elements to the default value

● the loop re-initializes the first n, or a.length, elements of
the new array

 13

More about References

● Just like an array variable, a String variable is a reference to
memory allocated to store the characters of the string
– and the length

● Becauses they are references, s1 == s2 compares whether
s1 and s2 refer to the same underlying memory

● and String.equals is used to compare the contents of the
strings: the lengths and the actual characters

● in Java, both arrays and Strings are Objects
● All Object values in Java are references to the memory

allocated to store the values of the object
● So the == comparison tells us whether two objects are the

very same, that is, whether they refer to the same memory,
while the Object.equals method may give us a more
meaningful comparison
– may, because comparing object contents is not always

meaningful

 14

Partially Filled Arrays

● Arrays are fixed size
● If the data we want to store in the array

has size n (where n is not fixed), we can:
– allocate an array as large as the largest

possible value of n
– at any given time, only use the first n

elements of the array
● we usually have a variable to keep track of

the current value of n
● since every array location has a value,

array locations n through a.length-1 store
values, but these are values we do not use

 15

Partially Filled Arrays: Example

int numLines = 0;

final int MAX_LINES = 1000;

String lines[] = new String[MAX_LINES];

while (in.hasNext() && numLines < MAX_LINES) {

 lines[numLines++] = in.next();

}

● at the end, linesFromUser has the number of
lines the user entered, and
lines[0..linesFromUser-1] has the actual lines

● we don't worry about the remaining elements
● when declaring arrays of fixed size, it is a good

idea to use a constant as the fixed size
● this constant can be used in the loop condition

 16

Bounds Errors and
Buffer Overflow

● In the previous example, suppose MAX_LINES
was a small number, and we didn't test for it in
the loop

● eventually, we might try to store a value in
lines[numLines] when numLines >= lines.length

● this is an error
● in Java, such an error throws an exception

– in other languages, it may overwrite memory
unrelated to the array: a buffer overflow

– in such languages, buffer overflow is hard to detect
and may cause serious problems

– see Random Fact 6.1 in the textbook
● in Java, negative indices also throw exceptions

 17

Enhanced For Loop

● It is very common to want to loop over all the elements
of the array

● In the special case where we:
– are only reading these elements (not assigning to them), and
– don't need the loop index,

there is a special syntax, called the enhanced for loop
● again, we use someType to stand in for the type of the

array elements:
for (someType e: a) {

 // inside the loop, e is a local variable

 // assigning to e does not change the array element!

}

● If the array has 0 elements, the body of the loop is
never executed

 18

Enhanced For Loop: Syntax

● for (type-of-the-array-element name-of-local-
variable-holding-the-element : array) {

● the type of the array element must match the
types of the elements of the array

● the name of the local variable is up to the
programmer

● the array is usually a variable, but could be an
expression such as the result of a call to
Arrays.copyOf

● The parentheses and colon are required
● The index of the element is not available in the

body of the loop -- if it is needed, use a
conventional for loop with an explicit index

 19

Example:
Finding the Maximum Value
● Suppose we are given an array of double

numbers, and want to find the largest

double a[] = ...

double max = a[0];

for (double element: a) {

 if (element > max) {

 max = element;

 }

}

● at the end of the loop, max has the value
of the largest element of the array

 20

Summary

● Arrays are objects that can hold a fixed number of
values of a given type in a specific sequence

● Arrays are mutable: assigning to an array element
changes the value in the array

a[0] = “hello world”;
● The first index is always 0
● array.length is the number of values, and array.length -

1 is the last index
● new allocates memory to hold the values of an array

(or any object)
● Arrays.copyOf copies contents of arrays (or we can

write a for loop)
● The enhanced for loop creates a new variable for each

array element and makes it available inside the loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

