
 1

ICS 111
Swing

● top-level containers
● z order
● text components
● Point, Dimension, and Rectangle
● size, bounds, preferred size, and packing
● swing and threads
● lambda expressions
● javax.swing.Timer and animation

 2

review: javax.swing.JFrame

● review: JFrame is the object (window) that
ultimately gets displayed

● there are three possible top-level objects:
JFrame, JDialog, and JApplet
– JDialog is used for dialogs
– JApplet was used for Java execution in web browsers

● JApplet is now deprecated and not generally supported by
browsers

● at initialization time, it is a good idea to call
setSize, setDefaultCloseOperation(EXIT_ON_CLOSE), and
finally setVisible

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JFrame.html

 3

default panes in a JFrame

● by default a JFrame has several panes
● In order:

– rootPane (the lowest of the panes)
– layeredPane
– contentPane (and menu bar)

● any menu bar included within the frame is displayed next to the contentPane
● setJMenuBar

– glassPane (the top pane)
– see this tutorial

● anything drawn on a later/higher pane covers anything drawn on an earlier/lower
pane
– the layeredPane itself provides several layers, again with later layers covering earlier layers

● frame content layer has the content pane and the menu bar (-30,000)
● default layer holds contents added without a depth (0)
● …
● popup layer is for menus and other popups (300)
● drag layer is for feedback while dragging (400)

– see this tutorial

https://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html
https://docs.oracle.com/javase/tutorial/uiswing/components/layeredpane.html

 4

z order

● sometimes we want to carefully place
graphical objects next to each other

● other times, we just want to cover whatever
is in a given position

● covering is done by specifying z order
● lower z covers higher z
● setComponentZOrder

in java.awt.Container
● or create a JLayeredPane

x

y

z

 5

text components

● review: JTextField and JTextArea
● subclasses of JTextComponent:
● unstyled: JTextField, JFormattedTextField,

JPasswordField, JTextArea
– formatted text field allows you to specify which

characters are allowed where and to localize
currency and date printing

● styled: JEditorPane, JTextPane
– may include pictures, varying fonts, etc.

● see this tutorial
●

https://docs.oracle.com/javase/tutorial/uiswing/components/text.html

 6

displaying web pages

public class Html extends javax.swing.JFrame {

 final static String HOME_PAGE = "http://www.alnt.org";

 public Html(String url) {

 java.awt.Component component = null;

 try {

 javax.swing.JEditorPane page = new javax.swing.JEditorPane(url);

 page.setEditable(false);

 component = page;

 } catch (Exception e) {

 System.out.println("got exception " + e);

 component = new javax.swing.JLabel(url + ": error " + e);

 }

 javax.swing.JScrollPane scroll = new javax.swing.JScrollPane(component);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 add(scroll);

 pack(); // reset the size to match the contents – no need for setSize

 setVisible(true);

 }

 public static void main(String[] args) {

 if (args.length == 0) {

 Html myPage = new Html(HOME_PAGE);

 } else {

 for (String s: args) {

 Html myPage = new Html(s);

 }

 }

 }

}

 7

Point, Dimension, and Rectangle

● a number of primitive dimensional
types are defined in java.awt, and used
throughout awt and swing

● Point represents an x,y coordinate
● Dimension represents a width and a

height
● Rectangle has the x,y of the upper left

corner and a width and a height

 8

size and preferred size, pack,
bounds

● setSize sets the current size of a JFrame:
– setSize(int width, int height);
– method inherited from java.awt.Window

● for any java.awt.Component, can call
setPreferredSize(Dimension size)

● java.awt.Window.pack() sets the size “to fit the preferred
size and layout of the subcomponents”
– so JFrame.pack() automatically sets the size

● for any java.awt.Window can call

setBounds(Rectangle newBounds)

these bounds give the new position (on the screen) and size
of the window

 9

single-threaded model

● when you create a JFrame, the code connected with the JFrame executes
in response to user actions, and independently of your main method

● that means the display code runs in a special thread called the event
dispatching thread

● so now your program has two threads: the main thread and the event
dispatching thread

● when the main thread wants to execute something in the event
dispatching thread, it must request that the code be invoked later:

javax.swing.SwingUtilities.invokeLater(Runnable r)

● the Runnable interface requires the run method:

public interface Runnable {

 void run();

}

● the run method, when scheduled with invokeLater, is allowed to modify
frames, repaint, and do any other kind of display operations

 10

lambda expressions

● we have seen many cases of interfaces which only require one method
● these interfaces often are the type of a parameter to a method

– we may build them using anonymous classes
– Runnable is an example

● in mathematics, a functional expression is called a lambda
expression (λ-expression)

● in Java, we can build an anonymous class that matches a single-
function interface by anonymously specifying the function:

new Runnable(() -> System.out.println("hello world"));

new Runnable(() - > {

 setSize(100, 100);

 setVisible(false); });

● This on-the-fly function definition in Java is also called a lambda
expression

 11

javax.swing.Timer

● code in the event dispatch thread should never sleep
● instead, such code can schedule an event for a later time

– specified in milliseconds from now, e.g 500 is ½ a second

javax.swing.Timer timer =

 new javax.swing.Timer(500, myActionListener);

● timer.start() starts the timer
● this timer event is scheduled in the same way as user interaction

events
● normally timers run forever

timer.setRepeat(false) makes the timer run only once
● java.util.Timer is similar and useful for other things, but should

not be used for displaying graphics

 12

using a Timer for animation
public class Clock extends javax.swing.JFrame {

 public static final int offset = 32;

 private void drawHand(java.awt.Graphics g, int
clockRadius, int minutes, double lengthFraction)
{

 int centerX = clockRadius;

 int centerY = clockRadius;

 // in math 0 degrees is to the right

 // on the clock 0 minutes is vertical

 int mathAngle =

 (360 * minutes / 60 + 270) % 360;

 double angle = 2 * Math.PI *

 (double)mathAngle / 360.0;

 double handLength =

 lengthFraction * (double)clockRadius;

 int endX = centerX +

 (int)Math.round(handLength *

 Math.cos(angle));

 int endY = centerY +

 (int)Math.round(handLength *

 Math.sin(angle));

 g.drawLine(centerX, centerY, endX, endY);

 }

 public Clock(int size) {

 java.awt.event.ActionListener updateClock =

 new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent e){

 repaint();

 }

 };

 new javax.swing.Timer(1000, updateClock).start();

 add(new javax.swing.JComponent() {

 protected void paintComponent(java.awt.Graphics g) {

 g.drawOval(10, 10, size - 20, size - 20); // clock face

 java.util.GregorianCalendar cal =

 new java.util.GregorianCalendar();

 cal.setTime(new java.util.Date());

 drawHand(g, size / 2, cal.get(java.util.Calendar.SECOND),

 0.85);

 drawHand(g, size / 2, cal.get(java.util.Calendar.MINUTE),

 0.7);

 drawHand(g, size / 2, cal.get(java.util.Calendar.HOUR) * 5,

 0.45);

 }

 });

 setSize(size, size + offset);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setVisible(true);

 }

 public static void main (String[] ignored) {

 Clock myClock = new Clock(200);

 }

}

 13

AnimationTimer

● public abstract class AnimationTimer

javafx.animation.AnimationTimer allows to
create a timer, that is called in each frame
while it is active. An extending class has to
override the method handle(long
timestamp) which will be called in every
frame.

● frames are typically 60 times per
second, or once every 16ms or so

https://docs.oracle.com/javase/10/docs/api/javafx/animation/AnimationTimer.html

 14

Summary

● writing apps with swing
– lots and lots of classes and methods to help

write useful, reasonably-looking apps
– layering: graphics “on top” (lower z) hide

graphics “below”
● understand the thread model: all display actions

must be done in the event handling thread
– main thread can request actions to be

executed in the event handling thread
– timers can schedule actions to be executed in

the event handling thread at a later time
● Android, iOS, have different systems but similar

principles

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

