ICS 111
GUI programming

History of Graphical User Interfaces
Frames
Labels

* subclassing JFrame

Historical note:
Non-Graphical User Interfaces

* The first computers were programmed using switches toggled by hand
By the 1970s, computers could use disks and magnetic tapes for storage

Users entered programs and data into computers with switches, punched
cards, and paper tape

Output was on printers, blinking lights, punched cards, and paper tape

Users could also interact with the computer via text-oriented terminals
- the Scanner and System.out methods in Java work just fine with teminals

- terminal windows provide all of the functionality of a hardware terminal

- in addition, terminal windows allow resizing, moving around the screen, etc

Historical note:
Early Graphics

* The graphic technique in common use today is known as bitmap graphics:

- each pixel (picture element - each dot) in the display is saved as a bit in memory
* multiple bits per pixel for color or grayscale displays

- a program in the computer reads and writes to a giant array of bits (or ints) to change what
the display shows

- bitmap displays are only affordable when memory is cheap

» Early graphics used commands sent to specialized hardware that could draw lines
on a screen: vector graphics

- no pixels!
- an image could only be drawn with straight lines
- vector graphics has improved a lot since the 1960s!

» Less fancy graphics were created
using characters printed to a printer.
This later became known as ASCII art

Historical Note:
Graphical User Interfaces

* In the 1970s, the Xerox Alto was developed as a personal computer

- instead of computers being in a machine room and shared by many users,
individual users could interact with their own computer

- the Alto had a keyboard, a 3-button mouse, and a (black and white) bitmap
graphic screen

* In the 1980s, Apple developed the Lisa, soon followed by the Macintosh,
both with 1-button mouse and bitmap graphic screen

* Microsoft also developed its Windows system for the IBM PC

« with the resulting large number of users, many developers produced
programs that would only work on bitmap graphical displays:

- word processors

- spreadsheets

- drawing programs
- games

- email clients

ater, web browsers

Historical Note:
Human-Computer Interaction

e computers were never easy to use

 computer scientists and others started studying ways
to make this better:

- how to make computers easier to use: recognize, not recall

* most users find it easier to click on a file rather than remember or
look up a file name

- how to reduce the number of errors

* have a universal “undo” rather than prompt “are you sure?”
- graphical, audio, and video input and output

» fingerprints instead of passwords

* This is a field straddling computer science and other
fields such as psychology and cognitive science

Review: GUIs In Java

» |JOptionPane dialog boxes: Sep 2nd |ecture, book special topic 2.5, homework 2
- just call JOptionPane.showlnputDialog, jOptionPane.showMessageDialog, ...
* JFrame and graphics: Sep 23 lecture, book special topic 4.3, homework 5

- the book (and we) used a fixed main method that:
» creates a Jframe object
» sets its size
» creates a Jcomponent that calls your draw method, and adds it to the frame
* makes the frame visible
« the draw method takes as parameter an object of type Graphics
- The java.awt.Graphics class has many methods, including:
» drawRect and fillRect
« drawLine
« drawOval and fillOval
« drawString

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Graphics.html

Model-View-Controller

* The internal representation of what is to be
displayed is the model

 What is actually displayed is the view

- the view may represent only part of the model

- methods such as javax.swing.JFrame.setVisible() and
java.awt.Component.repaint() make the view match
the model

 The controller accepts input from the user and
modifies the model accordingly

javax.swing.JFrame

* javax is a collection of eXtensions to the Java standard library

* swing is an update of the Abstract Window Toolkit (awt) library

» graphics in Java happen inside a JFrame, displayed as a window

* before you can use a JFrame, you should set its size, which is otherwise 0x0

JFrame frame = new JFrame () ;
frame.setSize (150, 100); // 150 wide, 100 tall
* you may also set the frame’s title:
frame.setTitle ("frame 1");
* make it clear that the program should exit if the user closes the frame:
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
« finally, make the frame visible:
frame.setVisible (true) ;

- setVisible (false) hides the frame

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JFrame.html

Example: building a basic Frame

BasicFrame. java
public abstract class BasicFrame {
protected javax.swing.JFrame frame;
// must be implemented by all non-abstract subclasses
protected abstract void addContents () ;
// constructor
public BasicFrame () {
frame = new javax.swing.JFrame () ;
frame.setSize (300, 200);
frame.setTitle ("basic frame");
frame.setDefaultCloseOperation (javax.swing.JFrame.EXIT_ON_CLOSE) ;
this.addContents(); // add the contents

frame.setVisible (true) ;

t
* subclasses of BasicFrame add their content by implementing addContents

public class BasicFrameSubclass extends BasicFrame {
protected void addContents () {

// no contents

http://www2.hawaii.edu/~esb/2020fall.ics111/BasicFrame.java

Organizing content:
javax.swing.JPanel

as stated in this tutorial, a JPanel is

useful for grouping components, simplifying component layout, and putting borders around
groups of components

by default, a JPanel’s components are added one after another, horizontally
- to change this, give a layout to the constructor for the JPanel, or call setLayout()
JPanel is a subclass of java.awt.Component, and as such, can be added to a JFrame

we can add different components to a JPanel, such as
- JLabel, displays text
- JButton, displays a button to click

* but we haven’t yet seen how to handle button clicks
- JScrollPane, allows scrolling of content place into the scrollpane

- JMenu
- JSlider

https://docs.oracle.com/javase/tutorial/uiswing/components/panel.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/LayoutManager.html

A simple example

public class BasicFrameWithTwoItems extends BasicFrame {
// code to add the contents of the frame
protected void addContents () {
javax.swing.JPanel panel = new javax.swing.JPanel ();
frame.add (panel) ;

panel.setlayout (new javax.swing.BoxLayout (panel, javax.swing.BoxLayout.Y_AXIS));

javax.swing.JLabel h = new javax.swing.JLabel ("Hello, world");
panel.add (h) ;
Javax.swing.JButton b = new Jjavax.swing.JButton ("This is a button");

panel.add (b) ;
}
// constructor —— not really needed, Java automatically calls super ()
public BasicFrameWithTwoItems () {
super () ; // calls addContents ()
}
public static void main (String[] a) {

BasicFrameWithTwoItems bfwti = new BasicFrameWithTwoItems () ;

Subclassing JFrame

 There is no need for the abstract class
BasicFrame, we can subclass JFrame

* the components can be instance
variables of the subclass

* the constructor (or a helper method)
Initializes the instance variables and
adds them to the frame

Summary

* Human-Computer Interaction (HCI) has
nelped us build systems that the average
person can fruitfully use

* Java graphics appear in a window called a
JFrame

- programs creating a JFrame should also
set a title and a size

 individual components can be placed in a
JPanel added to the JFrame

- the JPanel organizes the components
- each component has its own functionalit

| @

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

