
 1

ICS 111
GUI programming

● History of Graphical User Interfaces
● Frames
● Labels
● subclassing JFrame

 2

Historical note:
Non-Graphical User Interfaces

● The first computers were programmed using switches toggled by hand
● By the 1970s, computers could use disks and magnetic tapes for storage
● Users entered programs and data into computers with switches, punched

cards, and paper tape
● Output was on printers, blinking lights, punched cards, and paper tape
● Users could also interact with the computer via text-oriented terminals

– the Scanner and System.out methods in Java work just fine with teminals
– terminal windows provide all of the functionality of a hardware terminal
– in addition, terminal windows allow resizing, moving around the screen, etc

 3

Historical note:
Early Graphics

● The graphic technique in common use today is known as bitmap graphics:
– each pixel (picture element – each dot) in the display is saved as a bit in memory

● multiple bits per pixel for color or grayscale displays

– a program in the computer reads and writes to a giant array of bits (or ints) to change what
the display shows

– bitmap displays are only affordable when memory is cheap
● Early graphics used commands sent to specialized hardware that could draw lines

on a screen: vector graphics
– no pixels!
– an image could only be drawn with straight lines
– vector graphics has improved a lot since the 1960s!

● Less fancy graphics were created

using characters printed to a printer.

This later became known as ASCII art

 _ |\=/|.-"""-.
 >(o)__ /6 6\ \
 (_~_/ =_Y_/= (_ ;\
     ~~~~~~~          ^//_/-/__///
                               ((



  4

Historical Note:
Graphical User Interfaces

● In the 1970s, the Xerox Alto was developed as a personal computer
– instead of computers being in a machine room and shared by many users, 

individual users could interact with their own computer
– the Alto had a keyboard, a 3-button mouse, and a (black and white) bitmap 

graphic screen
● In the 1980s, Apple developed the Lisa, soon followed by the Macintosh, 

both with 1-button mouse and bitmap graphic screen
● Microsoft also developed its Windows system for the IBM PC
● with the resulting large number of users, many developers produced 

programs that would only work on bitmap graphical displays:
– word processors
– spreadsheets
– drawing programs
– games
– email clients
– later, web browsers



  5

Historical Note:
Human-Computer Interaction

● computers were never easy to use
● computer scientists and others started studying ways 

to make this better:
– how to make computers easier to use: recognize, not recall

● most users find it easier to click on a file rather than remember or 
look up a file name

– how to reduce the number of errors
● have a universal “undo” rather than prompt “are you sure?”

– graphical, audio, and video input and output
● fingerprints instead of passwords

● This is a field straddling computer science and other 
fields such as psychology and cognitive science



  6

Review: GUIs in Java

● JOptionPane dialog boxes: Sep 2nd lecture, book special topic 2.5, homework 2
– just call JOptionPane.showInputDialog, jOptionPane.showMessageDialog, …

● JFrame and graphics: Sep 23rd lecture, book special topic 4.3, homework 5
– the book (and we) used a fixed main method that:

● creates a Jframe object
● sets its size
● creates a Jcomponent that calls your draw method, and adds it to the frame
● makes the frame visible
● the draw method takes as parameter an object of type Graphics

– The java.awt.Graphics class has many methods, including:
● drawRect and fillRect
● drawLine
● drawOval and fillOval
● drawString

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Graphics.html


  7

Model-View-Controller

● The internal representation of what is to be 
displayed is the model

● What is actually displayed is the view
– the view may represent only part of the model
– methods such as javax.swing.JFrame.setVisible() and 

java.awt.Component.repaint() make the view match 
the model

● The controller accepts input from the user and 
modifies the model accordingly



  8

javax.swing.JFrame

● javax is a collection of eXtensions to the Java standard library
● swing is an update of the Abstract Window Toolkit (awt) library
● graphics in Java happen inside a JFrame, displayed as a window
● before you can use a JFrame, you should set its size, which is otherwise 0x0

JFrame frame = new JFrame();

frame.setSize(150, 100); // 150 wide, 100 tall

● you may also set the frame’s title:

frame.setTitle("frame 1");

● make it clear that the program should exit if the user closes the frame:

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

● finally, make the frame visible:

frame.setVisible(true);

– setVisible(false) hides the frame

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JFrame.html


  9

Example: building a basic Frame

BasicFrame.java

public abstract class BasicFrame {

  protected javax.swing.JFrame frame;

  // must be implemented by all non-abstract subclasses

  protected abstract void addContents();

  // constructor

  public BasicFrame() {

    frame = new javax.swing.JFrame();

    frame.setSize(300, 200);

    frame.setTitle("basic frame");

    frame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

    this.addContents(); // add the contents

    frame.setVisible(true);

  }

}

● subclasses of BasicFrame add their content by implementing addContents

public class BasicFrameSubclass extends BasicFrame {

  protected void addContents() {

    // no contents

  }

} 

http://www2.hawaii.edu/~esb/2020fall.ics111/BasicFrame.java


  10

Organizing content:
javax.swing.JPanel

● as stated in this tutorial, a JPanel is

useful for grouping components, simplifying component layout, and putting borders around 
groups of components

● by default, a JPanel’s components are added one after another, horizontally
– to change this, give a layout to the constructor for the JPanel, or call setLayout()

● JPanel is a subclass of java.awt.Component, and as such, can be added to a JFrame
● we can add different components to a JPanel, such as

– JLabel, displays text
– JButton, displays a button to click

● but we haven’t yet seen how to handle button clicks

– JScrollPane, allows scrolling of content place into the scrollpane
– JMenu
– JSlider

https://docs.oracle.com/javase/tutorial/uiswing/components/panel.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/LayoutManager.html


  11

A simple example

public class BasicFrameWithTwoItems extends BasicFrame {

  // code to add the contents of the frame

  protected void addContents() {

    javax.swing.JPanel panel = new javax.swing.JPanel();

    frame.add(panel);

    panel.setLayout(new javax.swing.BoxLayout(panel, javax.swing.BoxLayout.Y_AXIS));

    javax.swing.JLabel h = new javax.swing.JLabel("Hello, world");

    panel.add(h);

    javax.swing.JButton b = new javax.swing.JButton("This is a button");

    panel.add(b);

  }

  // constructor -- not really needed, Java automatically calls super()

  public BasicFrameWithTwoItems() {

    super();   // calls addContents()

  }

  public static void main(String[] a) {

    BasicFrameWithTwoItems bfwti = new BasicFrameWithTwoItems();

  }

}



  12

Subclassing JFrame

● There is no need for the abstract class 
BasicFrame, we can subclass JFrame

● the components can be instance 
variables of the subclass

● the constructor (or a helper method) 
initializes the instance variables and 
adds them to the frame



  13

Summary

● Human-Computer Interaction (HCI) has 
helped us build systems that the average 
person can fruitfully use

● Java graphics appear in a window called a 
JFrame
– programs creating a JFrame should also 

set a title and a size
● individual components can be placed in a 

JPanel added to the JFrame
– the JPanel organizes the components
– each component has its own functionality


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

