
 1

ICS 111
Overriding, Polymorphism

● overloading methods
● overriding methods
● object polymorphism
● abstract methods, abstract classes
● final methods, final classes
● example from textbook: bank accounts

 2

Method Overloading

● We have already seen cases where methods with the same name are called on
different parameters:
– System.out.println() and System.out.println(String s)
– constructors with different parameter types

● In each case, these are different methods that just happen to have the same name
● This is called overloading

– for example, System.out.println is an overloaded method
– constructors can be overloaded

● Overloading is fine under two conditions:
– it doesn’t cause confusion to callers of the methods

● i.e. the methods should do “the same thing”, even though on different parameters

– it is done on purpose, rather than accidentally
● accidental overloading can happen when overriding methods – discussed on the next slide

 3

Method Overriding

● when a subclass extends a superclass, it inherits its public+protected methods
● sometimes in the subclass we want to modify what one of the superclass methods does:

– suppose I create a MyAL class which extends ArrayList
– I want to modify the single-parameter add method to add at the beginning of the array list, rather

than at the end
● I can do this by re-declaring the same method in the subclass, with the same

parameters, and re-implementing it
● the method in the subclass may use super to call the method in the superclass

– example for MyAL:
public void add(Value v) {

 super.add(0, v);

}

● accidental overloading happens when we intend to override, but use a different set of
parameter types

 4

Overriding and overloading:
remembering the difference

● Overriding is when a subclass
re-implements the method of a
superclass
– the new method overrides (takes

over from) the corresponding
method in the superclass

● Overloading is when the same
name refers to different
methods
– the name is overloaded because,

instead of referring to a single
method, it refers to several
different methods

● the same name has to “carry”
multiple methods – it is overloaded

 5

What method gets called?

● Suppose we have a method that takes as parameter an Object and prints it:
public static void printObject(Object x) {

 String s = x.toString();

 System.out.printf("%s\n", s);

}

● if I have a variable of type ArrayList<String> al = …
● and given that ArrayList overrides the toString() method of its superclass
● calling printObject(al) calls which toString method?

– Object.toString(), or
– ArrayList.toString()

● calling the method in ArrayList is more useful
● and this is what Java does:

– method calls are determined dynamically by the actual underlying object, not by the type
declaration

 6

Polymorphism

● in Greek, “poly” refers to many, and “morph-” refers to form, shape, or type
● in computer science, polymorphism refers to a single variable possibly having values

of different types
● we have seen polymorphism in the example on the previous slide: the parameter is

Object, the actual value is of type ArrayList<String>
● within the method that has a parameter of type Object, we can only use methods of

the Object class
– but as we have seen, the method that is actually called is the most specific possible method,

determined dynamically
● so:

1. only the methods of the declared type can be used

2. of these methods, the one from the actual object is the one that is used
● this is important for writing correct programs!
● fortunately, it is also rather intuitive

 7

things to be careful about
● remember to use super when calling methods from

the superclass
– this and super help resolve name clashes

● use accessor and mutator methods to access the
private variables in the superclass

● constructor calls to this() or super() must be the
first statement in the body of a constructor

● this refers to the actual object, not the declared
object type
– this.toString() calls the toString() method of the

subclass, not of the superclass, nor Object.toString()

 8

abstract classes and methods

● sometimes a class is designed to be subclassed
● the designer of the superclass may want to require the subclass to provide a specific method
● this method is called abstract in the superclass

– and does not have an implementation in the superclass

public abstract String concatenate(String s);

● any class with one or more abstract methods is an abstract class
– and must be declared with the keyword abstract

public abstract class StringOperations { ….

● abstract classes have no constructors
● we cannot create an object of an abstract class
● but we can have variable and parameter types be abstract classes

public class Example extends StringOperations { … }

StringOperations s1 = new Example();

● summary: an abstract class forces implementers of subclasses to implement all the methods that are
abstract in the superclass

● implementers of subclasses still inherit any non-abstract methods from the superclass

 9

final classes and methods

● we have seen that variables declared with final are
constants

● the final keyword is used in a similar sense in class
declarations to mean that a class cannot be subclassed

public final class String { … }

● final can also be used in a method declaration, to mean
that the method cannot be overridden:

public final void doNotOverrideThis(int x) { …

● abstract classes are common in the Java standard library,
final classes are not as common

 10

Worked-out example:
Bank Account class

● from textbook Section 9.4, How-To 9.1
● design and implement a class hierarchy to represent different

types of bank account
● at the root of the hierarchy is a BankAccount object that can

represent any account
– it keeps the balance in an instance variable
– it has a getBalance() accessor method
– it has mutator methods for deposits and withdrawals
– it has a method to do end-of-month processing

● which doesn’t do anything
● but may be overridden by subclasses

 11

Worked-out example: subclasses

● each subclass of BankAccount, e.g SavingsAccount and CheckingAccount,
provides the deposit, withdrawal, getBalance, and monthEnd methods
– only overriding whatever methods it needs to override
– we could easily have an account type that does not override any methods

● the SavingsAccount overrides the monthEnd method to deposit interest into
the bank account once a month:

double interest;

public void monthEnd() {

 super.deposit(interest * super.getBalance());

}

the book handles a few more cases, specifically computing the interest on the
minimum rather than the final balance

● in this example, both uses of super are optional, since SavingsAccount does
not override getBalance and deposit

 12

Review: Objects and Classes

● classes define the type of object values
● the implementation of a class includes all the class variables (including

the instance variables) and the class methods and their code
● classes are grouped hierarchically so that every class (except Object)

extends another class
– a value of a subclass type can always be used where a value of the superclass

type is needed
– but not the other way around, e.g. you cannot use an Object where a String is

needed
● extending a class gives us all of that class’s methods

– with the option of overriding some of those methods
– and of course the option of declaring our own methods and variables

 13

Summary

● we are starting to see that programming
with objects is more than just getting our
code to work: it is also about
representing our data in clear and useful
ways

● once we have created data
representations useful for the task at
hand, the actual code can be relatively
simple

● coding includes the coding of methods
inside a class, and the coding of methods
that create and use objects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

