ICS 111
Final Review 1/2

Basic types
* Expressions, variables, and assignments

Seguence

Repetition

Conditionals

Parallel execution
Program structure

ICS 111 review:
Java basic types

* byte, short, int, long
- 1-byte, 2-byte, 4-byte, 8-byte integers

- variable++ increments a numeric variable, after recording its value
as the value of the expression

- ++variable increments it before recording the value
- also variable-- or --variable

» float, double

- 4-byte, 8-byte floating point numbers
* boolean

- true or false
* char

- we haven’t looked at chars much, but we know strings are
essentially immutable arrays of characters

ICS 111 review:
Java Object types

* Byte, Short, Integer, Long, Float, Double, Boolean,
Character

* Object and Object references

- the null Object reference

- new to create a new object and return the reference, after
calling the constructor

* each class defines a new Object type

« Strings are Objects that store sequences of characters

« arrays are Objects that store any fixed number of
elements of type Object or any basic type

Arraylists are like arrays, but can grow and shrink

ICS 111 review:
Java operators and expressions

arithmetic operators: +, -, *, /, %

- If all the operands are integral, division and
modulo use integer division, always rounding
towards zero (i.e. truncating)

boolean operators: &&, ||, !
* conditional expressions: b ? yes : no

- yes and no must evaluate to the same type
* a variable by itself can be an expression

many methods from the String and Math
lasses can be used in expressions

ICS 111 review:
Java variables

* a variable is a name for a memory location that can
remember a value

* local variables have scope from the declaration to the end of
the block

 instance variables can be accessed by any instance method

« static variables can always be accessed: they are global
variables

* public, protected, private (and default) modifiers

* instance and static variables are automatically initialized by
Java, to default values

- default values for basic types are 0 or false
- default values for objects are null
there is no default initialization for local variables!

ICS 111 review:
assignment

the assignment x = value stores value Into the
memory named x

* initialization combines the syntax for assignment
with the syntax for declaration

int x = value;
- Initializations are always required in ICS 111, and are
almost always a good idea

* assignment of object variables copies the
reference, and not the object

calling a method performs an assignment to
ach of the parameters of the method

ICS 111 review:
code execution in sequence

statements are executed one after another

- basic statements include assignments, and built-in primitives such as break, return, throw
- method calls are also statements

- declarations, with or without initialization, are also in sequence with statements

» sequences of statements are grouped into blocks

- blocks are surrounded by { curly braces }

- blocks may include local variable declarations

- the body of a loop or a conditional may be a block, or a single statement

* logical (boolean) expressions with && and || use short-circuit evaluation, only
evaluating the right-hand side if the value of the left-hand side makes it
necessary

« if part of the evaluation of an expression throws an exception, the rest of the
expression is not evaluated

- what exactly is evaluated can be seen when expressions have side effects, for example
count++, some method calls, or throwing exceptions

sequence is so “normal” that most programmers don’t think much about it

ICS 111 review:
repetition and loops

* three basic loop statements are for, while, and
do..while

while (x < n) { ..

e for (int x = 0; x < n; x++) {

- enhanced for is a kind of for loop, and for loops are
particularly useful with arrays and Collections

for (int x: a) {

to avoid infinite loops, the body of the loop must make
changes that affect the loop condition

break exits from the nearest enclosing loop (or switch)
statement

ecursion also allows repeated execution

ICS 111 review:
conditionals

1f (conditionl) { .. }
else 1f (conditionZ?2) { .. }
else { .. }

» there could be zero or multiple else if statements

* the else part is optional

« conditional execution is an essential part of
computation, giving the ability to execute
different parts of the code in different situations

* the boolean conditions may evaluate
expressions, call methods, and so on

ICS 111 review:
parallel execution: threads

* multiple threads in a graphics program:

- the main thread executes as usual

- the event dispatch thread thread executes in response to graphics events

* this is an example of event-oriented programming)
* the main thread may also schedule events for the event dispatch thread

» threads can also be started explicitly

- we haven’t studied this

- useful for concurrent execution
* e.g one thread might be waiting for input from a user
» another thread might be waiting for input from a network socket
« and another thread might be carrying out a background computation

- threads can give higher performance if you have multiple CPUs (multiple cores)

global variables can be accessed by any thread

- threads have to be careful when accessing shared variables
controlled concurrent access to shared variables is synchronization

» each thread has its own stack, so local variables are thread-specific, but
threads share the global memory (the heap), which means that instance and

ICS 111 review:
parallel operations

do the same operation to every element of an array

e.g. add 1 to every element of an array

- or add 1 to every odd element of an array

- or add the corresponding elements of two different arrays

- this is a map, mapping an operation across the elements of an array

summing all the elements of an array can also be done partly in parallel

- in parallel, can add elements 1 and 2, elements 3 and 4, elements 5 and 6,
elements 7 and 8, and so on

- in the next step, add elements 1, 2, 3, 4, in parallel with adding elements 5, 6, 7, 8,
and so on

- this is a reduce, using the same operation to combine all the elements of the
array

simultaneous operations on many elements are often called vector
operations

we have not yet studied threads, and we have not yet studied MapReduce
nd vector operations

ICS 111 review:;
code structure

naming conventions, comments and Javadoc
* code reuse through packages and inheritance

- the less code we have to write, the fewer the bugs

 methods and classes help us to split code into
understandable and manageable units

» controlling access to class variables helps
when reasoning about code correctness

 when writing larger programs, all these come
Into play to make the program as clear and as
bug-free as possible

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

