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ICS 111
Fundamentals of computation

● Sequence, Repetition, Conditionals, 
Parallel Execution, Program Structure.

● Arithmetic and Logical Operations.
● Data Types, Variables, and Memory.



  2

Building Blocks of Computations

● Each of the things a computer can do is relatively 
simple
– any educated human can add two numbers or verify 

whether a number is > 0 or turn a light on or off
– that is the kind of things a computer can do

● The power of computers comes from doing many of 
these simple things:
– quickly, and
– very reliably

● How to put together these simple things to achieve 
useful goals?
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Putting Together Simple 
Computations

● Sequence
– do A, then do B

● Repetition
– do A 100 times

● Conditionals
– if A do B, otherwise (else) do C

● Parallel Execution
– do A, B, and C, possibly at the same time

● Program Structure
– organize the program so programmers can understand it better
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Sequence of Operations

buy the ingredients for a cake

mix the ingredients together

let them rise

preheat the oven

put the ingredients in a cake pan

put the cake pan in the oven

carefully take the cake pan out of the oven

● no single step gives you a cake, but all of them together do
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Repetition of Operations

while there are cherries left to eat

eat the next cherry

properly dispose of the pit

● this repeats a sequence of operations
● a repetition is generally known as a loop
● the number of loops is:

– variable (different on different days)
– fixed (always equal to the number of cherries)
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Example of Looping

total = 0

foreach kind in { bills, coins }

foreach unit in kind  // kind is bill or coin, unit is the bill or coin
total = total + value of the unit

● loops can be nested
● an assignment (x = x + y) assigns a new value to a 

variable (x, total, unit, and kind are variables)t
– the variable itself can appear in the expression
– its value in the expression is the old value, before the 

assignment takes place



  7

Conditional Execution

if my team wins

collect money from my friend

else

pay money to my friend

● the condition is true or false
– something that is true or false is a boolean

● only one of the branches is executed
– the if branch or the else branch

● the else part is optional
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Example of Conditional Execution

wasNegative = false

if a > 0

b = a

else if a < 0

b = -a

wasNegative = true

● the final value of b is the absolute value of a
– but only if a is non-zero!
– this may or may not be an error

● the wasNegative boolean variable keeps track of whether the value of a 
is less than 0

● if a is zero (the missing “else”), there are no assignments
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Parallel Execution

● All of these primitives (sequence, repetition, 
conditional execution) were available to John 
Backus in the 1950s

● Since then, computers have evolved to have:
– multiple processing cores
– vector execution units

● Faster programs will take advantage of these 
hardware features

● Parallel execution is not part of 111, so this is just 
an introduction
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Two Ways to do Parallel Execution

● Do different things, possibly at the same time
– This is similar to a sequence, but the different 

things may be done at the same time
– main mechanism: threads

● Do the same thing at the same time to 
different items of data
– This is similar to a repetition, but again the 

different things may be done at the same time
– main mechanisms: vector processing, 

map/reduce
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Parallel Execution Example

● 10 delivery people can deliver 20 pizzas
– much faster that 1 delivery person can 

deliver all 20 pizzas
– each of the 10 delivery people delivers 

their pizzas sequentially
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Program Structure

● All the preceding mechanisms are needed to write 
useful programs

● However, programming is very much a human 
activity

● Humans need help with the complexity of large 
programs
– no single human can completely understand a program 

with millions of lines of code
● Program Structure helps humans write correct code
● Programming is a human activity!!!
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Unstructured Programs

1. a = 0

2. b = 3

3. a = a + b

4. if a < 0 goto 3

5. if b < 0 goto 7

6. b = b - a

7. a = -a

8. goto 2
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Structured Programs

● It is unnecessarily hard to find out 
what an unstructured program is doing

● structured programs make the code 
more accessible to programmers, 
without removing whatever complexity 
is actually necessary
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Some Mechanisms
for Structuring Programs

● Make it easy to create logical abstractions
– for example, a math library or a function for spell-

checking or drawing a picture
– Related code can be in the same source file, less-related 

code can be in different files
● Hide unnecessary details

– when calling Math.sin(x), you don't need to know how 
many internal variables the sin function has

– As much as possible, names should only have local 
significance

● None of this is easy, all have tradeoffs
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Arithmetic and Logical Operations

● Java provides the four basic arithmetic operators, 
plus modulo (%):

+   -   *   /   %

● and comparison operators:
<   <=   ==   =>   >

== can be used with non-numerical values

remember that = is used for assignments, not 
comparisons

● and logical operators:
&&   ||   !
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Java Example

if (((3 + a / 2) == 7) &&

    (b < 0)) {

b = a;

}

● operators have precedence, so

3 + a / 2 is: 3 + (a/2), and not (3 + a) / 2
● in this class, it is safe to over-parenthesize to 

be sure what the grouping is
● using the wrong grouping gives runtime errors!
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Data Types

● It would not make sense to add a 
boolean (true or false) to an integer, nor 
to use an integer as the condition of an 
if statement

● Every value in Java has a data type
● Data types that we've seen so far 

include boolean and integer
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Primitive Java Data Types

● Java has 8 primitive data types:
– boolean

– four integer data types:
● byte, -128 to 127
● short, -32,768 to 32,767
● int, - 2,147,484,648 (-231) to 2,147,483,647
● long, -2^63 to 2^63-1

– two floating point data types, float and double
● floating point can represent a fractional number such as 3.14
● in your code, almost always use double

– char
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Non-Primitive Java Data Types

● Every value in Java that is not one of the 
primitive data types is an Object

● one common type of Object is a String, 
used to hold a sequence of printable 
characters such as “Hello, world!”

● Java classes give programmers the power 
to create new Object types
– we introduce classes and objects later in this 

semester
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Computer Memory

● A computer stores values in memory
● There are many different kinds of memory in a 

computer, including disk storage and main 
memory (RAM)

● Most program values are stored in RAM
– generally, when computer people talk of memory, we 

mean RAM
● Values are stored in named locations called 

variables
● Each variable in Java has a type
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Java Variables

int x = 3;

boolean b = true;

x = x + 1;

b = ! b;

● the variable declaration creates the name in the 
program, and reserves space in memory at runtime

● the declaration is usually combined with variable 
initialization
– variables should only be used after initialization

● the variable can store any one value of the given type
● at the end of the above code, x is 4 and b is false
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Variables, Values, Expressions

● a variable is a named location in 
memory
– examples: int x, double y, boolean b

● an expression is a part of a computer 
program that computes a value
– 2 + 2 is an expression with value 4
– x > 0 is an expression whose value (true 

or false) depends on the value of x



  24

Types in Java

● Java expressions, values, variables each have a type
● we have seen the primitive types and Object
● in general, types must match:

– only boolean values can be used in the condition part of an if 
statement

– only numeric types can be used in arithmetic expressions
● however, Java offers some flexibility

– for example, we can mix integers and doubles in the same 
arithmetic expression (the result is a double)

– we will see more such flexibility as we learn more Java
● types can help catch errors at compile time rather than at 

runtime!
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Summary

● Basic operations include assignments, and 
arithmetic, logic, and boolean computations.

● Basic operations can be combined 
sequentially or in parallel, executed 
conditionally or repeated any number of 
times

● Variables are names for memory locations
● Program Structure reduces the cognitive 

complexity of programs
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