
 1

ICS 111
Fundamentals of computation

● Sequence, Repetition, Conditionals,
Parallel Execution, Program Structure.

● Arithmetic and Logical Operations.
● Data Types, Variables, and Memory.

 2

Building Blocks of Computations

● Each of the things a computer can do is relatively
simple
– any educated human can add two numbers or verify

whether a number is > 0 or turn a light on or off
– that is the kind of things a computer can do

● The power of computers comes from doing many of
these simple things:
– quickly, and
– very reliably

● How to put together these simple things to achieve
useful goals?

 3

Putting Together Simple
Computations

● Sequence
– do A, then do B

● Repetition
– do A 100 times

● Conditionals
– if A do B, otherwise (else) do C

● Parallel Execution
– do A, B, and C, possibly at the same time

● Program Structure
– organize the program so programmers can understand it better

 4

Sequence of Operations

buy the ingredients for a cake

mix the ingredients together

let them rise

preheat the oven

put the ingredients in a cake pan

put the cake pan in the oven

carefully take the cake pan out of the oven

● no single step gives you a cake, but all of them together do

 5

Repetition of Operations

while there are cherries left to eat

eat the next cherry

properly dispose of the pit

● this repeats a sequence of operations
● a repetition is generally known as a loop
● the number of loops is:

– variable (different on different days)
– fixed (always equal to the number of cherries)

 6

Example of Looping

total = 0

foreach kind in { bills, coins }

foreach unit in kind // kind is bill or coin, unit is the bill or coin
total = total + value of the unit

● loops can be nested
● an assignment (x = x + y) assigns a new value to a

variable (x, total, unit, and kind are variables)t
– the variable itself can appear in the expression
– its value in the expression is the old value, before the

assignment takes place

 7

Conditional Execution

if my team wins

collect money from my friend

else

pay money to my friend

● the condition is true or false
– something that is true or false is a boolean

● only one of the branches is executed
– the if branch or the else branch

● the else part is optional

 8

Example of Conditional Execution

wasNegative = false

if a > 0

b = a

else if a < 0

b = -a

wasNegative = true

● the final value of b is the absolute value of a
– but only if a is non-zero!
– this may or may not be an error

● the wasNegative boolean variable keeps track of whether the value of a
is less than 0

● if a is zero (the missing “else”), there are no assignments

 9

Parallel Execution

● All of these primitives (sequence, repetition,
conditional execution) were available to John
Backus in the 1950s

● Since then, computers have evolved to have:
– multiple processing cores
– vector execution units

● Faster programs will take advantage of these
hardware features

● Parallel execution is not part of 111, so this is just
an introduction

 10

Two Ways to do Parallel Execution

● Do different things, possibly at the same time
– This is similar to a sequence, but the different

things may be done at the same time
– main mechanism: threads

● Do the same thing at the same time to
different items of data
– This is similar to a repetition, but again the

different things may be done at the same time
– main mechanisms: vector processing,

map/reduce

 11

Parallel Execution Example

● 10 delivery people can deliver 20 pizzas
– much faster that 1 delivery person can

deliver all 20 pizzas
– each of the 10 delivery people delivers

their pizzas sequentially

 12

Program Structure

● All the preceding mechanisms are needed to write
useful programs

● However, programming is very much a human
activity

● Humans need help with the complexity of large
programs
– no single human can completely understand a program

with millions of lines of code
● Program Structure helps humans write correct code
● Programming is a human activity!!!

 13

Unstructured Programs

1. a = 0

2. b = 3

3. a = a + b

4. if a < 0 goto 3

5. if b < 0 goto 7

6. b = b - a

7. a = -a

8. goto 2

 14

Structured Programs

● It is unnecessarily hard to find out
what an unstructured program is doing

● structured programs make the code
more accessible to programmers,
without removing whatever complexity
is actually necessary

 15

Some Mechanisms
for Structuring Programs

● Make it easy to create logical abstractions
– for example, a math library or a function for spell-

checking or drawing a picture
– Related code can be in the same source file, less-related

code can be in different files
● Hide unnecessary details

– when calling Math.sin(x), you don't need to know how
many internal variables the sin function has

– As much as possible, names should only have local
significance

● None of this is easy, all have tradeoffs

 16

Arithmetic and Logical Operations

● Java provides the four basic arithmetic operators,
plus modulo (%):

+ - * / %

● and comparison operators:
< <= == => >

== can be used with non-numerical values

remember that = is used for assignments, not
comparisons

● and logical operators:
&& || !

 17

Java Example

if (((3 + a / 2) == 7) &&

 (b < 0)) {

b = a;

}

● operators have precedence, so

3 + a / 2 is: 3 + (a/2), and not (3 + a) / 2
● in this class, it is safe to over-parenthesize to

be sure what the grouping is
● using the wrong grouping gives runtime errors!

 18

Data Types

● It would not make sense to add a
boolean (true or false) to an integer, nor
to use an integer as the condition of an
if statement

● Every value in Java has a data type
● Data types that we've seen so far

include boolean and integer

 19

Primitive Java Data Types

● Java has 8 primitive data types:
– boolean

– four integer data types:
● byte, -128 to 127
● short, -32,768 to 32,767
● int, - 2,147,484,648 (-231) to 2,147,483,647
● long, -2^63 to 2^63-1

– two floating point data types, float and double
● floating point can represent a fractional number such as 3.14
● in your code, almost always use double

– char

 20

Non-Primitive Java Data Types

● Every value in Java that is not one of the
primitive data types is an Object

● one common type of Object is a String,
used to hold a sequence of printable
characters such as “Hello, world!”

● Java classes give programmers the power
to create new Object types
– we introduce classes and objects later in this

semester

 21

Computer Memory

● A computer stores values in memory
● There are many different kinds of memory in a

computer, including disk storage and main
memory (RAM)

● Most program values are stored in RAM
– generally, when computer people talk of memory, we

mean RAM
● Values are stored in named locations called

variables
● Each variable in Java has a type

 22

Java Variables

int x = 3;

boolean b = true;

x = x + 1;

b = ! b;

● the variable declaration creates the name in the
program, and reserves space in memory at runtime

● the declaration is usually combined with variable
initialization
– variables should only be used after initialization

● the variable can store any one value of the given type
● at the end of the above code, x is 4 and b is false

 23

Variables, Values, Expressions

● a variable is a named location in
memory
– examples: int x, double y, boolean b

● an expression is a part of a computer
program that computes a value
– 2 + 2 is an expression with value 4
– x > 0 is an expression whose value (true

or false) depends on the value of x

 24

Types in Java

● Java expressions, values, variables each have a type
● we have seen the primitive types and Object
● in general, types must match:

– only boolean values can be used in the condition part of an if
statement

– only numeric types can be used in arithmetic expressions
● however, Java offers some flexibility

– for example, we can mix integers and doubles in the same
arithmetic expression (the result is a double)

– we will see more such flexibility as we learn more Java
● types can help catch errors at compile time rather than at

runtime!

 25

Summary

● Basic operations include assignments, and
arithmetic, logic, and boolean computations.

● Basic operations can be combined
sequentially or in parallel, executed
conditionally or repeated any number of
times

● Variables are names for memory locations
● Program Structure reduces the cognitive

complexity of programs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

