
A Comparative Review of
HTTP/1.1, HTTP/2 &
HTTP/3

December 3, 2018

Nancy Mogire

HTTP:
What,
Why &
How
Summary

● WHAT → The Hypertext Transfer Protocol (HTTP)

● WHAT → “a stateless application-level protocol for distributed,

collaborative, hypertext information exchange ”

● WHY → generic interface for communication on the internet without

regard to types of resources being exchanged or implementation of

communicating HTTP clients.

● WHY → enables communication of web resources between different

user agents and servers.

● HOW → message sender lets a receiver know the format of data

representation so as they can be able to appropriately parse the

exchanged web resource.

HTTP:
Sequence

 User --url--> HTTP Client
 Client -----HTTP Request-------> Server

 Server <----->Data
storage

 Client <----HTTP Response--------Server
 User <--parse & display--Client

HTTP Participants and Protocol Model
 Participants

➢ Client/User Agent
○ Initiator of the connection - e.g. browser, command shell, mobile app, or any

other end-user—facing application
➢ Server

○ The target host in a connection request
➢ Intermediaries

○ Virtual and physical components in between the two principals of a connection:
server and client. Include:

■ Proxies - functions such as caching, authentication and content filtering
■ Tunnels- Blind relays which do not change the message e.g. TLS through a

firewall
■ Gateways - Routers

 Client - Server Model

➢ Client sends a request to a server and the server responds with the
requested web resource

➢ Intermediaries may(often) exist between the two

HTTP Components

➢ The Resource
○ Any piece of data identifiable by HTTP’s Uniform Resource Identifier(URI)

scheme
○ E.g. text, images, videos, scripts ..etc

➢ URI/URL
○ URL → resource identifier plus path of getting to it i.e. its network location e.g.

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

○ URI → String that identifies a specific resource e.g.
/wiki/Uniform_Resource_Identifier

➢ Request
○ HTTP communication initiating message sent from client to server

➢ Response
○ Server reply to a request

➢ Connection
○ Transport layer link between the client and the server.
○ Protocols in/underlying a HTTP connection: TCP, UDP

HTTP Components
➢ Message

○ Contents of the request or response
○ Can be in the form of plaintext characters - HTTP/1.1 or Frames - HTTP/2 and

HTTP/3
○ Start Line→ Request-Line/Status-Line, Header, Message Body → payload

➢ Message Header & Header Fields
○ Allows client and server to exchange additional information with a request or

response → Information about resource involved in a connection or about the
connection, or the participants

○ Carried within the header fields e.g Content-Encoding, Content-Length
○ Each field has a name followed by a value separated by a colon
○ Header Types:
○ Entity-header - about message body e.g. content length, Request header - about

the requested resource or the client, Response header - about the response or the
server, General header - about all except the entity

➢ Security
○ TLS - HTTPS

HTTP/0.9
1990/91

➢ Goal: Transfer html data
online - as simplified
prototype for full HTTP →
AKA, One-line protocol

➢ Simple-request: One line
ASCII string e.g. telnet
google.com 80; or GET
/mypage.html

➢ Simple - response: ASCII
character stream

➢ HTML only
➢ Over TCP/IP
➢ Single Exchange - Close

Connection

[https://hpbn.co/brief-history-of-http/], [Mozilla]

HTTP/1.0
1995

HTTP/1.1
1997

Version
Overview,
Background,
Timeline

➢ Goals: Add functionality →
transfer more than just
HTML; provide metadata on
request & response; format
data in internet mail format.

➢ Added: headers with header
fields containing req/resp
metadata e.g. version no.

➢ Over TCP/IP
➢ Single Exchange per

Connection & close
➢ Other content types e.g img
➢ Other capabilities: e.g.

content encoding & caching

 [https://hpbn.co/brief-history-of-http/]

➢ Goals: Resolve ambiguities;
performance optimization

➢ Added: Connection Persistence
by default;

➢ Chunked transfer
encoding(message broken down
and transferred in chunks-
supports dynamic content
generation)

➢ Request pipelining(send
multiple requests without
waiting for each response first -
good use of persistent
connection i.e. latency reduction)

➢ Expanded caching functionality
[https://hpbn.co/brief-history-of-http/] ,
[fir3net]

https://hpbn.co/brief-history-of-http/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://hpbn.co/brief-history-of-http/
https://hpbn.co/brief-history-of-http/
https://www.fir3net.com/Networking/Protocols/http-caching-http-1-0-vs-http-1-1.html

➢ Goal: Improve Performance from version 1 i.e.
reduce latency; minimize protocol overhead;
Enable request prioritization; Enable server push
messages; Enhance other functions e.g. flow
control & error handling.

➢ Left all HTTP semantics intact
➢ Changed: data formatting & transportation

mechanism → ASCII to binary format
➢ Added: Binary framing layer & message framing;

Transfers in bidirectional streams;
Multiplexing(break msg into frames→ interleave in
streams→reassemble at end) → allows parallel
processing; stream prioritization; one connection
per origin; server push; header compression

➢ Runs over TCP

[developers.google]

➢ Goals: Improve performance on transport layer
and solve application layer problems

➢ Leaves HTTP core intact
➢ Combines functionalities of TCP+TLS+HTTP2

over UDP
➢ Additions include: Faster connection

establishment(Client uses cached server
credentials from prev connection to send
encrypted request right after hello → one-way
handshake to start subseq) ; Improved
congestion control; Multiplexing with no
head-of-line blocking-(lost packets affect only
that stream while streams without loss can go on);

[chromium.org]

HTTP/2
2015

HTTP/3
2018/19

Version
Overview,
Background,
Timeline

https://developers.google.com/web/fundamentals/performance/http2/#push_promise_101
https://www.chromium.org/quic

Summing the HTTP Objectives
➢ Correct Output

○ Message version specifies format for parsing→ correct retrieval
○ Message ordering for correct request/response matching - e.g. head-of-line blocking

or message IDs
○ Server Push Messages - responses needed to parse the ones requested

➢ Reliable Delivery
○ TCP reliability mechanisms, Flow control, Congestion Control, Prioritization

➢ Fast Delivery → Latency reduction
○ frame based transfer, compression, multiplexing, concurrency

➢ Connection Management
○ Set up, use, multiple uses(persistence) tear down

➢ Resource management
○ Reduce header overhead → compression, session re-use -persistence, multiplexing

- parallel processing
➢ Security

○ Confidentiality & Integrity - data encryption in SHTTP, then connection encryption,
then as packet encryption in version 3

Comparative View of Last 3 Versions

HTTP/1.1 , HTTP/2 , HTTP/3

➢ Header

➢ Message

➢ Transmission Format

➢ Transport and Security Mechanisms

➢ Connection Management: Establishment, Persistence, Closure

➢ Message Ordering, Multiplexing & Concurrency

➢ Flow Control, Congestion Control, Prioritization

➢ Cross-Version Compatibility

Header:
Header Format, Compression and Transmission

HTTP/1.1 ● ASCII /Plaintext
● No compression
● Header field names - case insensitive

HTTP/2 ● HPACK compression of header into block
● Breaks header block into frames for transmission
● Huffman encoding + Static table of commonly used header fields +

Dynamic table with fields specific to the session
● All field names lower case and request line is split into separate

pseudo-header fields :method, :scheme, :authority, and :path.

HTTP/3 ● Frames
● Lower case field names plus pseudoheaders as in version 2
● QPACK compression
● Huffman encoding + Static table of commonly used header fields +

Dynamic table with fields specific to the session

Message Transmission Format - Framing

Message Format

HTTP/1.1 ● ASCII /Plaintext
● Header Section
● Message Body
● Separated by empty line

HTTP/2 ● Frames
● Headers Frame
● Data Frame - Payload

HTTP/3 ● Frames
● Header block - message headers
● Payload body - Data Frames
● Optional Trailer Block - Additional Header information -

dynamically generated while message sent

Message: Examples
GET REQUEST: HTTP/1.1 to HTTP/2

 GET /resource HTTP/1.1 HEADERS
 Host: example.org ==> + END_STREAM
 Accept: image/jpeg + END_HEADERS
 :method = GET
 :scheme = https
 :path = /resource
 host = example.org
 accept = image/jpeg

POST REQUEST HTTP/1.1 to HTTP/2
POST /resource HTTP/1.1 HEADERS
Host: example.org ==> - END_STREAM
Content-Type: image/jpeg - END_HEADERS
Content-Length: 123 :method = POST

 :path = /resource{binary data
 :scheme = https

 CONTINUATION
 + END_HEADERS
 content-type = mage/jpeg
 host = example.org
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

Message: Examples

Example of HTTP/3 Handshake:

 Client Server

 Initial[0]: CRYPTO[CH] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."]

 Initial[1]: ACK[0]
 Handshake[0]: CRYPTO[FIN], ACK[0]
 1-RTT[0]: STREAM[0, "..."], ACK[0] ->

 1-RTT[1]: STREAM[55, "..."], ACK[0]
 <- Handshake[1]: ACK[0]

 Example of 1-RTT Handshake - source:[12]

● After the handshake, HTTP/2 message can be sent

Transport and Security Mechanisms
Transport
Mechanism

Security

HTTP/1.1 ● TCP Session ● Transport Layer Security(TLS)
○ TLS 1.2
○ Previously → SSL

● Hypertext Transfer Protocol Secure (HTTPS)
● Bi-directional encryption between client and server

HTTP/2 ● TCP Session ● Same as in HTTP/1.1 i.e. optionally runs over TLS for
encrypted connection

HTTP/3 ● UDP Packet ● Packet level protection
● Runs TLS 1.3 at the transport layer
● Protects packets with keys from the TLS handshake

under AEAD algorithm - Authentication Encryption
with Associated Data (AEAD)

● All QUIC packets except Version Negotiation and
Retry packets are protected with AEAD

Connection Management: Estab, Persistence & Closure
Connection Establishment Persistence Closure

HTTP/1.1 ● Client initiates TCP
connection

● Multiple simultaneous
TCP connections
allowed

● Persistent By default
● Recipient determines

the status based on
protocol version of
tmost recently
received message or
on connection
header

● "close" connection
header option to signal
closing init

● sender or receiver
● Premature closing,

re-open automatically,
once

HTTP/2 ● Client initiates TCP
connection

● Single connection per
host-port pair for each
server,

● Multiple streams can be
run

● Persistent By default
● Can be closed if idle

● Connection can be
closed if idle

● Endpoints should send
GOAWAY message to
signal initiating
graceful closing

● Can close without
GOAWAY if
misbehaving peer

Connection Management: Estab, Persistence & Closure

Connection Establishment Persistence Closure

HTTP/3 ● Quic Hello Handshake
○ Client sends

ClientHello Msg,
gets server hello
with encryption
credentials and
sends settings frame
e.g. Maximum
stream ID

○ Then create streams
by sending data

● Persistent By default

● use QUIC PING
frames to keep it
open

● Closes if idle

● Client can initiate
close by not sending
new messages i.e.
staying idle

● Server sends
GOAWAY message,
clears any remaining
requests it has and
starts the shutdown

Message Ordering, Multiplexing & Concurrency

Message Ordering Multiplexing Concurrency

HTTP/1.1 ● Queued
● Head-of-line

blocking i.e. one
request serviced
at a time

● Not Multiplexed ● Parallel sessions can be
run via parallel
independent but
simultaneous
connections

HTTP/2 ● Absolute
ordering of
frames spanning
across all
streams

● Each stream has
integer identifier

● Frame sending
order
determines
receive order.

● Multiplexed across
streams

● Several streams can be
open concurrently and
frames from multiple
streams can be
interleaved

● "stream" is an
independent,
bidirectional sequence of
frames exchanged
between the client and
server

Message Ordering, Multiplexing & Concurrency
Message Ordering Multiplexing Concurrency

HTTP/3 ● Separate
frame ordering
per each
stream

● Guarantees
in-order
delivery within
each stream
but not across
all streams

● Allows multiplexing with no
head-of-line blocking

● Per-stream flow control plus
connection-wide flow control

● Messages on different
streams do not block each
other i.e. if packet is lost on
one stream, other streams
can go on.

● Multiple concurrent
streams can be open

● Parallel - due to correct
out-of-order stream
delivery.

Flow Control, Congestion Control, Prioritization
Flow Control Congestion Control Prioritization

HTTP/1.1 ● No flow control
● Relies on TCP

● No congestion
control

● No prioritization

HTTP/2 ● Flow control provided for
entire connection i.e.
across streams but not per
stream

● Only data frames subject
to flow control

● Any algorithm

● Provided by TCP ● Client can assign
priority status for a
new stream via the
HEADERS frame

● Can update it later
using a PRIORITY
frame

HTTP/3 ● Per-Stream Flow Control
in addition to
connection-level flow
control

● Advertises max data to be
received on each stream
and aggregate buffer size
for all

● Uses mechanism
similar to TCP
NewReno (RFC6582):
Congestion avoidance
→ additive increase
multiplicative
decrease (AIMD)

● Using PRIORITY
frames sent on
control streams

● Can also be done by
assigning others as
dependents

Cross-Version Compatibility - Upward & Downward
Upgrading Read/Reply Lower Version

HTTP/1.1 ● Start a connection using
HTTP/1.1

● Request upgrade to
HTTP/2 using upgrade
header

● Can only upgrade to h2c
→ HTTP/2 Cleartext"

● Initiated by client but a
server can require it

● compatible with HTTP/0.9, 1.0
● can recognize the request line and any valid

request
● respond appropriately with a message in the

same version used by the client.
● recognize the status line in HTTP/1.0

HTTP/2 ● No upgrade mechanism ● Fully compatible with HTTP/1.1,

HTTP/3 ● N/A ● HTTP/3 is compatible with previous versions

Conclusion

➢ Hypertext Transfer Protocol (HTTP) has undergone numerous changes since it was first

adopted → Now multiple versions of HTTP exist

➢ Each version filling in gaps that existed in the previous one

➢ HTTP/0.x got the core concept up and running—a stateless application-level protocol

for distributed, collaborative, hypertext information exchange.

➢ HTTP/1.x solved details such as the need for persistent connections and name-based

virtual hosts. Security Introduced here SSL → TLS

➢ HTTP/2 introduced binary message framing, multiplexing and other extensions to

optimize performance

➢ HTTP/3—the latest version— adds per-stream multiplexing and flow control plus

packet-level security → adds reliability, reduces latency and improves security

References

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overvie
w
https://www.w3.org/Protocols/HTTP/1.0/spec.html#Purpose
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc1945
https://hpbn.co/http2/
https://http2.github.io/
https://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
https://quicwg.org/base-drafts/draft-ietf-quic-http.html
https://en.wikipedia.org/wiki/Text-based_protocol
https://en.wikipedia.org/wiki/Binary_protocol
https://tools.ietf.org/html/draft-ietf-quic-http-16#page-4
https://tools.ietf.org/html/draft-ietf-quic-http-16#page-10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.4
https://tools.ietf.org/html/draft-ietf-quic-qpack-03
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/draft-ietf-quic-transport-16
https://tools.ietf.org/html/draft-ietf-quic-transport-16#ref-QUIC-T
LS
https://www.ietf.org/rfc/rfc2660.txt

https://www.pcmag.com/encyclopedia/term/51302/shttp
https://hpbn.co/brief-history-of-http/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_
HTTP/Evolution_of_HTTP
https://www.fir3net.com/Networking/Protocols/http-caching-http
-1-0-vs-http-1-1.html
https://developers.google.com/web/fundamentals/performance/h
ttp2/#push_promise_101
https://www.chromium.org/quic
https://tools.ietf.org/html/rfc7540#section-5
https://tools.ietf.org/html/draft-ietf-quic-transport-13#section-4.4.1
https://developers.google.com/web/fundamentals/performance/h
ttp2/#streams_messages_and_frames
https://quicwg.org/base-drafts/draft-ietf-quic-http.html#rfc.section.
5.3
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-00
https://developer.mozilla.org/en-US/docs/Web/HTTP/Protocol_u
pgrade_mechanism

