A Comparative Review of
HTTP/1.1, HTTP/2 &
HTTP/3

December 3, 2018

Nancy Mogire

HTTP:
What,

Why &
How
Summary

WHAT — The Hypertext Transfer Protocol (HTTP)

WHAT — “a stateless application-level protocol for distributed,

collaborative, hypertext information exchange”

WHY — generic interface for communication on the internet without
regard to types of resources being exchanged or implementation of

communicating HTTP clients.

WHY — enables communication of web resources between different

user agents and servers.

HOW — message sender lets a receiver know the format of data
representation so as they can be able to appropriately parse the

exchanged web resource.

User --url--> HTTP Client

Client ----- HTTP Request------- > Server
HTTP: :
Server <----- >Data
Seq vuence storage
Client <----HTTP Response-------- Server

User <--parse & display--Client

HTTP Participants and Protocol Model

Participants

> Client/User Agent
o Initiator of the connection - e.g. browser, command shell, mobile app, or any
other end-user—facing application
> Server
o The target host in a connection request
> Intermediaries
o Virtual and physical components in between the two principals of a connection:
server and client. Include:
m Proxies - functions such as caching, authentication and content filtering
m Tunnels- Blind relays which do not change the message e.g. TLS through a
firewall
m Gateways - Routers

Client - Server Model

> Client sends a request to a server and the server responds with the
requested web resource
> Intermediaries may(often) exist between the two

HTTP Components

> The Resource
o Any piece of data identifiable by HTTP’s Uniform Resource Identifier(URI)

scheme
o E.g. text, images, videos, scripts ..etc
> URI/URL

o URL — resource identifier plus path of getting to it i.e. its network location e.g.
https://en.wikipedia.org/wiki/Uniform_Resource Identifier
o URI — String that identifies a specific resource e.g.
/wiki/Uniform_Resource_Identifier
> Request

o HTTP communication initiating message sent from client to server
> Response
o Server reply to a request

> Connection
o Transport layer link between the client and the server.
o Protocols infunderlying a HTTP connection: TCP, UDP

HTTP Components

> Message
o Contents of the request or response
o Can be in the form of plaintext characters - HTTP/1.1 or Frames - HTTP/2 and
HTTP/3
o Start Line— Request-Line/Status-Line, Header, Message Body — payload

> Message Header & Header Fields

o Allows client and server to exchange additional information with a request or
response — Information about resource involved in a connection or about the
connection, or the participants

o Carried within the header fields e.g Content-Encoding, Content-Length

o Each field has a name followed by a value separated by a colon

o Header Types:

o Entity-header - about message body e.g. content length, Request header - about
the requested resource or the client, Response header - about the response or the
server, General header - about all except the entity

> Security
o TLS-HTTPS

Version

Overview,

Background,
Timeline

>
>
>

HTTP/0.9
1990/91

Goal: Transfer html data
online - as simplified
prototype for full HTTP —
AKA, One-line protocol
Simple-request: One line
ASCII string e.g. telnet
google.com 80; or GET
/mypage.html

Simple - response: ASCII
character stream

HTML only

Over TCP/IP

Single Exchange - Close
Connection

 [https://hpbn.co/brief-history-of-http/], [Mozilla] : :

vy

Vv

HTTP/1.0
1995

Goals: Add functionality —
transfer more than just
HTML,; provide metadata on
request & response; format
data in internet mail format.
Added: headers with header
fields containing reg/resp
metadata e.g. version no.
Over TCP/IP

Single Exchange per
Connection & close

Other content types e.g img

Other capabilities: e.g.
content encoding & caching

[https://hpbn.co/brief-history-of-http/)

Goals: Resolve ambiguities;
performance optimization
Added: Connection Persistence
by default;

Chunked transfer :
encoding(message broken down :
and transferred in chunks- :
supports dynamic content
generation)

Request pipelining(send
multiple requests without
waiting for each response first -
good use of persistent
connection i.e. latency reduction)
Expanded caching functionality

(https://hpbn.co/brief-history-of-http/] ,
fir3net

https://hpbn.co/brief-history-of-http/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://hpbn.co/brief-history-of-http/
https://hpbn.co/brief-history-of-http/
https://www.fir3net.com/Networking/Protocols/http-caching-http-1-0-vs-http-1-1.html

Version

Overview,

Background,
Timeline

Yy

>

Goal: Improve Performance from version 1 i.e.
reduce latency; minimize protocol overhead,;
Enable request prioritization; Enable server push
messages; Enhance other functions e.g. flow
control & error handling.

Left all HTTP semantics intact

Changed: data formatting & transportation
mechanism — ASCII to binary format

Added: Binary framing layer & message framing;
Transfers in bidirectional streams;

Multiplexing(break msg into frames— interleave in

streams—reassemble at end) — allows parallel
processing; stream prioritization; one connection
per origin; server push; header compression
Runs over TCP

. [developers.google]

HTTP/3
2018/19

Goals: Improve performance on transport layer
and solve application layer problems

Leaves HTTP core intact

Combines functionalities of TCP+TLS+HTTP2
over UDP

Additions include: Faster connection
establishment(Client uses cached server
credentials from prev connection to send
encrypted request right after hello —» one-way
handshake to start subseq) ; Improved
congestion control; Multiplexing with no
head-of-line blocking-(lost packets affect only :
that stream while streams without loss can go on);

. [chromium.org

https://developers.google.com/web/fundamentals/performance/http2/#push_promise_101
https://www.chromium.org/quic

Summing the HTTP Objectives

> Correct Output

o Message version specifies format for parsing— correct retrieval
o Message ordering for correct request/response matching - e.g. head-of-line blocking
or message IDs
o Server Push Messages - responses needed to parse the ones requested
Reliable Delivery
o TCP reliability mechanisms, Flow control, Congestion Control, Prioritization
Fast Delivery — Latency reduction
o frame based transfer, compression, multiplexing, concurrency
Connection Management
o Set up, use, multiple uses(persistence) tear down
Resource management
o Reduce header overhead — compression, session re-use -persistence, multiplexing
- parallel processing
Security
o Confidentiality & Integrity - data encryption in SHTTP, then connection encryption,
then as packet encryption in version 3

Comparative View of Last 3 Versions

HTTP/1.1, HTTP/2,HTTP/3

Header

Message

Transmission Format

Transport and Security Mechanisms

Connection Management: Establishment, Persistence, Closure
Message Ordering, Multiplexing & Concurrency

Flow Control, Congestion Control, Prioritization

Y VYV VY VYV Y VY

Cross-Version Compatibility

Header Format, Compression and Transmission

HTTP/1.1 e ASCII /Plaintext
e No compression
e Header field names - case insensitive

HTTP/2 e HPACK compression of header into block

e Breaks header block into frames for transmission

e Huffman encoding + Static table of commonly used header fields +
Dynamic table with fields specific to the session

e All field names lower case and request line is split into separate
pseudo-header fields :method, :scheme, :authority, and :path.

HTTP/3 Frames

Lower case field names plus pseudoheaders as in version 2
QPACK compression

Huffman encoding + Static table of commonly used header fields +

Dynamic table with fields specific to the session

Message Transmission Format - Framing

Message Format
HTTP/1.1 e ASCII /Plaintext
e Header Section
e Message Body
e Separated by empty line
HTTP/2 e Frames
e Headers Frame
e Data Frame - Payload
HTTP/3 e Frames
e Header block - message headers
e Payload body - Data Frames
e Optional Trailer Block - Additional Header information -
dynamically generated while message sent

Message: Examples

GET REQUEST: HTTP/1.1 to HTTP/2

GET /resource HTTP/1.1 HEADERS

Host: example.org
Accept: image/jpeg

==> + END_STREAM
+ END_HEADERS
:method = GET
:scheme = https
:path = /resource
host = example.org
accept = image/jpeg

POST REQUEST HTTP/1.1 to HTTP/2

POST /resource HTTP/1.1

Host: example.org ==>

Content-Type: image/jpeg
Content-Length: 123

HEADERS
- END_STREAM

- END_HEADERS

:method = POST

:path = /resource{binary data
:scheme = https

CONTINUATION

+ END_HEADERS
content-type = mage/jpeg
host = example.org
content-length =123

DATA
+ END_STREAM

{binary data}

Message: Examples

Example of HTTP/3 Handshake:
Client Server
Initial[0]: CRYPTOI[CH] ->
Initial[0]: CRYPTO[SH] ACK]J0]
Handshake[0]: CRYPTOI[EE, CERT, CV, FIN]
<-1-RTT[0]: STREAMI1, "..."]
Initial[1]: ACKI0]
Handshake[0]: CRYPTOIFIN], ACK][0]
1-RTT[0]: STREAM]O, "..."], ACKI[0] ->
1-RTT[1]: STREAM]55, "..."], ACKI[0]
<- Handshake[1]: ACK]J0]

Example of 1-RTT Handshake - source:[12]

e After the handshake, HTTP/2 message can be sent

Transport and Security Mechanisms

Transport Security
Mechanism
HTTP/1.1 e TCP Session e Transport Layer Security(TLS)
o TLS1.2
o Previously — SSL
e Hypertext Transfer Protocol Secure (HTTPS)
e Bi-directional encryption between client and server
HTTP/2 e TCP Session e Same asin HTTP/1.1 i.e. optionally runs over TLS for
encrypted connection
HTTP/3 e UDP Packet e Packet level protection

e Runs TLS 1.3 at the transport layer

e Protects packets with keys from the TLS handshake
under AEAD algorithm - Authentication Encryption
with Associated Data (AEAD)

e All QUIC packets except Version Negotiation and
Retry packets are protected with AEAD

Connection Management: Estab, Persistence & Closure

Connection Establishment

Persistence

Closure

HTTP/1.1 Client initiates TCP e Persistent By default "close" connection
connection e Recipient determines header option to signal
Multiple simultaneous the status based on closing init
TCP connections protocol version of sender or receiver
allowed tmost recently Premature closing,
received message or re-open automatically,
on connection once
header
HTTP/2 Client initiates TCP e Persistent By default Connection can be

connection

Single connection per
host-port pair for each
server,

Multiple streams can be
run

e Can be closed if idle

closed if idle
Endpoints should send
GOAWAY message to
signal initiating
graceful closing

Can close without
GOAWAY if
misbehaving peer

Connection Management: Estab, Persistence & Closure

Connection Establishment

Persistence

Closure

HTTP/3

e Quic Hello Handshake

(@]

Client sends
ClientHello Msg,
gets server hello
with encryption
credentials and
sends settings frame
e.g. Maximum
stream ID

Then create streams
by sending data

Persistent By default

use QUIC PING
frames to keep it
open

Closes if idle

Client can initiate
close by not sending
new messages i.e.
staying idle

Server sends
GOAWAY message,
clears any remaining
requests it has and
starts the shutdown

Message Ordering, Multiplexing & Concurrency

Message Ordering Multiplexing Concurrency

HTTP/1.1 Queued e Not Multiplexed Parallel sessions can be
Head-of-line run via parallel
blocking i.e. one independent but
request serviced simultaneous
at a time connections

HTTP/2 Absolute e Multiplexed across Several streams can be
ordering of streams open concurrently and
frames spanning frames from multiple
across all streams can be
streams interleaved
Each stream has "stream"” is an
integer identifier independent,

Frame sending
order
determines
receive order.

bidirectional sequence of
frames exchanged
between the client and
server

Message Ordering, Multiplexing & Concurrency

Message Ordering

Multiplexing

Concurrency

HTTP/3

e Separate
frame ordering
per each
stream

e Guarantees
in-order
delivery within
each stream
but not across
all streams

e Allows multiplexing with no
head-of-line blocking

e Per-stream flow control plus
connection-wide flow control

e Messages on different
streams do not block each
other i.e. if packet is lost on
one stream, other streams
can go on.

e Multiple concurrent
streams can be open

e Parallel - due to correct
out-of-order stream
delivery.

Flow Control, Congestion Control, Prioritization

Prioritization

Flow Control

Congestion Control

HTTP/1.1 No flow control e No congestion e No prioritization
Relies on TCP control

HTTP/2 Flow control provided for e Provided by TCP e Client can assign
entire connection i.e. priority status for a
across streams but not per new stream via the
stream HEADERS frame
Only data frames subject e Can update it later
to flow control using a PRIORITY
Any algorithm frame

HTTP/3 Per-Stream Flow Control e Uses mechanism e Using PRIORITY
in addition to similar to TCP frames sent on
connection-level flow NewReno (RFC6582): control streams
control Congestion avoidance

Advertises max data to be
received on each stream
and aggregate buffer size
for all

— additive increase
multiplicative
decrease (AIMD)

e Can also be done by
assigning others as
dependents

Cross-Version Compatibility - Upward & Downward

Upgrading Read/Reply Lower Version
HTTP/1.1 e Start a connection using e compatible with HTTP/0.9, 1.0
HTTP/1.1 e can recognize the request line and any valid
e Request upgrade to request
HTTP/2 using upgrade e respond appropriately with a message in the
header same version used by the client.
e Can only upgrade to h2c e recognize the status line in HTTP/1.0
— HTTP/2 Cleartext"
e |[nitiated by client but a
server can require it
HTTP/2 e No upgrade mechanism e Fully compatible with HTTP/1.1,
HTTP/3 e N/A e HTTP/3 is compatible with previous versions

> Hypertext Transfer Protocol (HTTP) has undergone numerous changes since it was first
adopted — Now multiple versions of HTTP exist

> Each version filling in gaps that existed in the previous one

> HTTP/0.x got the core concept up and running—a stateless application-level protocol
for distributed, collaborative, hypertext information exchange.

> HTTP/1.x solved details such as the need for persistent connections and name-based
virtual hosts. Security Introduced here SSL — TLS

> HTTP/2 introduced binary message framing, multiplexing and other extensions to
optimize performance

> HTTP/3—the latest version— adds per-stream multiplexing and flow control plus

packet-level security — adds reliability, reduces latency and improves security

References

https:/ /developer.mozilla.org/en-US/docs/Web /HTTP/Overvie
w

https:/ /www.w3.org/Protocols/HTTP/1.0/spec.html#Purpose
https:/ /tools.ietf.org/html/rfc7230

https:/ /tools.ietf.org/html/rfc7231

https:/ /tools.ietf.org /html/rfc1945

https:/ /hpbn.co/http2/

https:/ /http2.github.io/

https:/ /tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

https:/ /quicwg.org/base-drafts /draft-ietf-quic-http.html

https:/ /en.wikipedia.org/wiki/Text-based_protocol

https:/ /en.wikipedia.org/wiki/Binary_protocol

https:/ /tools.ietf.org /html/draft-ietf-quic-http-16#page-4

https:/ /tools.ietf.org/html/draft-ietf-quic-http-16#page-10

https:/ /www.w3.org/Protocols/rfc2616 /rfc2616-sec4.html#sec4.4
https:/ /tools.ietf.org/html/draft-ietf-quic-qpack-03

https:/ /tools.ietf.org /html/rfc7540

https:/ /tools.ietf.org /html/draft-ietf-quic-transport-16

https:/ /tools.ietf.org/html/draft-ietf-quic-transport-16#ref-QUIC-T
LS

https:/ /www ietf.org/rfc/rfc2660.txt

https:/ /www.pcmag.com/encyclopedia/term /51302 /shttp

https:/ /hpbn.co/brief-history-of-http/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

https:/ /developer.mozilla.org/en-US/docs/Web/HTTP /Basics_of_
HTTP/Evolution_of HTTP

https:/ /www fir3net.com/Networking /Protocols /http-caching-http
-1-0-vs-http-1-1.html

https:/ /developers.google.com/web/fundamentals/performance/h
ttp2/#push_promise_101

https:/ /www.chromium.org/quic

https:/ /tools.ietf.org /html/rfc7540#section-5

https:/ /tools.ietf.org /html/draft-ietf-quic-transport-13#section-4.4.1
https:/ /developers.google.com/web/fundamentals/performance/h
ttp2/#streams_messages_and_frames
https://quicwg.org/base-drafts /draft-ietf-quic-http html#rfc.section.
5.3

https:/ /tools.ietf.org /html/draft-tsvwg-quic-protocol-00

https:/ /developer.mozilla.org/en-US/docs/Web/HTTP/Protocol_u
pgrade_mechanism

