Computer Networks
ICS 651

* Ethernet Network Design

* application-level protocol iIssues
e HTTP

e HTTPS (SSL/TLS)



Ethernet-based home setup

* one host, H, connected to the internet (the “router”)
* internally, 100Mb/s or 1Gb/s switch-based Ethernet
* externally cable modem, ADSL, or other technology

* H does Network Address Translation (L4 translation) so:

* |P packets going out are rewritten to have H as source address,
and often a different source port

* incoming packets are rewritten to have the correct destination
host and port number

* for ICMP Echo, can rewrite identifier

* for ICMP Error messages, need to look up port number in
original header

* H can also:
* perform firewall functions
* allocate addresses via DHCP
* be the default router for all internal computers



Network Address Translation
and Firewall

* for TCP we know when the connection starts and ends, so
can de/allocate state in the NAT box

* and we generally disallow inbound connections

* except when explicitly configured to accept them

* for UDP/ICMP we don't know when the connection is done,
so we must cache: allocate when the first packet between
(pair of IPs and ports) is sent from inside to outside,
deallocate after a timeout

* drop inbound UDP/ICMP that do not match a translation

* it generally doesn’t matter what local port we use for
outgoing connections

* to run a server, must “poke a hole” in the firewall, i.e. tell the
firewall to accept inbound TCP connections to a given port



Our Network So Far

* DNS

* IP, ICMP, and routing

* TCP and UDP

* Ethernet and WiFi (and SLIP/serial ports)

* can carry data end-to-end, reliably or quickly

* can build robust, efficient, fast, inexpensive local area
networks

* what is missing: why are we carrying the data?



Tasks for the application

* user interaction
* accomplishing specific tasks
* encoding real-world data (and voice/video)

* "creating" and "consuming" data



Application Layer Functions

* client-server interactions
* sessions: logging In, user state
* security

* ultimate end-to-end evaluation of reliability (e.g. "reload"
button in browser) and performance

* applications nest, e.g. social networking sites are nested
within the web



Some Application Layer Protocols

* HTTP
* HTTPS/SSL/TLS

*ssh
* SMTP/POP/IMAP
* NTP




HTTP

* HyperText Transfer Protocol

* request and reply headers, both encoded in ASCIl (HTTP/2
and HTTP/3 use binary)

* headers are variable length, with variable fields
* first line is required, some fields are required

* header ends at first empty line

* ancestry: FTP

* HTTP/1.1 allows multiple requests/replies to be sent on a
single TCP connection

* In-class exercise: explain why this is an improvement over
HTTP/1.0 (one request/reply per TCP connection)



HTTP/1.1 example

* an HTTP request might look like this:

GET /~esb/ HTTP/1.1
Host: www2.hawaii.edu
Accept: */*
Connection: close

* a corresponding HTTP reply might look like this:

HTTP/1.1 200 OK

Date: Tue, 27 Nov 2018 20:59:07 GMT

Server: Apache/2.2.15 (Red Hat)
Last—-Modified: Mon, 06 Aug 2018 23:29:37 GMT
ETag: "20a3d58c—-225e-572ccab69blel "
Accept—-Ranges: bytes

Content—-Length: 8798

Connection: close

Content-Type: text/html; charset=UTF-8

<html>



HTTPS

* secure version of HTTP
* two types of protection:

* authentication provides evidence that communication is
occurring with the intended party (as identified by the URL)

* encryption hides the contents of the communication
(including passwords and credit card numbers) from
eavesdroppers

* HTTPS is very similar to HTTP, except: SSL or TLS is used
as an end-to-end secure tunnel (VPN) to connect the browser
to the server (see RFC 2818)

* Transport Layer Security, or TLS (RFC 5246) provides
authentication and secrecy using public-key cryptography to
agree on a shared secret key

* this shared secret key is then used to encrypt the data



HTTPS authentication

* any public-key cryptosystem depends, for security, on
knowing the other party's public key

* otherwise, man-in-the-middle attacks can easily succeed

* in https, the authenticity of a server's public key
(correspondence between a public key and an IP+port
number combination) is guaranteed by having the public key
signed by a certificate authority (CA)

* most web browsers are pre-configured with the public keys
of multiple certificate authorities, assumed trustworthy

* e.g. In firefox, Preferences -> Privacy & Security ->View
Certificates

* the communication is safe as long as the certificate authority
can be trusted (not always the case)

* servers usually authenticate clients in other ways, e.g. with

a password or a credit card number or by access to an email
Aaddrecc



Active Web

* the static web has been, and continues to be, was
Immensely successful as a repository of static information (of
varying reliability)

* however, the user interaction model of the static web is
limited to users clicking links

* for many purposes this is not adequate, e.g. logging in

* so the web evolved to provide support for server-side and
client-side code execution that could provide different models
of interactivity and customization

* this code generally increases the vulnerabillity to attack of
both the client and the server

* client-side code might make further requests from the
server, either using HTTP or HTTPS, or a custom protocol

* cookies allow the server to store state on the client, for
purposes of later authentication or identity matching




A Better World-Wide Web?

* in-class discussion: is it possible to redesign the Internet to
avoid at least some of the antisocial behavior in today's
Internet?

* without breaking what has made the Internet as successful
as It I1s?

* first step: list antisocial behaviors



Network Security

* Alice and Bob are trying to

communicate securely, Charlie

wishes to do all sorts of mischief

* for example, if Charlie is the man in the middle, he can read

all the messages between A
some or all of them, and per

ice and Bob, maybe remove
naps add his own

* this might be accomplished by owning or subverting a
router, or with other tricks including ARP spoofing or DNS

spoofing

* in theory, encryption protects the contents, authentication
guarantees that the sender is a machine with the correct key

* as long as the correct public key is known, Public-Key
Encryption works well (but slowly)



Network Security in Practice

* In practice, applications have vulnerabilities:
* array overflow (e.g. heartbleed) or stack overflow

* being tricked into executing code or SQL commands
(shellshock)

* being designed for a different (e.g., secure) environment

* not being secure against random or malicious inputs
(shellshock)

* once the attacker can execute some code on a machine,
privilege escalation might lead to executing other code as the
superuser (root user)

* firewalls can prevent access to all applications other than

the ones explicitly selected by a knowledgeable user -- but
cannot nrotect nermitted annlication<



Network Security in Practice

* In practice, applications have vulnerabilities:
* array overflow (e.g. heartbleed) or stack overflow

* being tricked into executing code or SQL commands
(shellshock)

* being designed for a different (e.g., secure) environment

* not being secure against random or malicious inputs
(shellshock)

* once the attacker can execute some code on a machine,
privilege escalation might lead to executing other code as the
superuser (root user)

* firewalls can prevent access to all applications other than

the ones explicitly selected by a knowledgeable user -- but
cannot nrotect nermitted annlication<



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

