

Computer Networks
ICS 651

● bitcoin
● allnet
● exam review:

● transport layer
● TCP basics
● congestion control
● project 2

Bitcoin

• distributed, reliable ("hard to falsify") time-stamping network
• each time-stamp record ("block") includes existing
transactions, and a summary (hash from Merkle tree) of all
previous transactions
• finding valid blocks require compute power,
• first n bits of hash must all be zero
• can only be found at random (we think!)
• n evolves to keep the number of blocks generated at a

near constant rate
• "block miners" get a reward for finding a block with a
suitable hash
• each block keeps track of all transactions since the last
block by including a hash of the most recent block
• P2P network distributes the blocks to all peers

Bitcoin transactions

• each transaction has a list of input transactions, adding up
to an amount B

• each transaction has a list of output amounts and public
keys, adding up to an amount B' <= B

• if B' < B, the difference B - B' belongs to the block miner as
a transaction fee

• the input transactions must provide evidence of having a
private key equivalent to the public key of the corresponding
output transaction

Bitcoin block chain

• each bitcoin miner produces and hashes as many blocks as
possible until it finds a hash with the first n bits zero
• the miner then broadcasts the block as fast as possible
• every other miner includes this block into a new block they
try to generate
• two (or more) miners may find blocks A and B approximately
simultaneously, and broadcast both throughout the network
• every miner has a choice of which block to include in the
block they are working on
• the next successful block C will have picked one of the
winners of the previous round, A or B
• almost all miners will now build their block on C, confirming
either A or B, and one of them will produce a new block D
• eventually, only one of A or B is confirmed by the growing
block chain

Other applications of blockchains

• distributed, reliable network for time-stamping transactions

• might be useful anywhere distributed recordkeeping is
needed

• e.g. real-estate transactions

• but proof-of-work is expensive!

• proof-of-stake may be a less energy-intensive alternative

• bankers may like the idea of a distributed network limited
to only carefully-selected participants

• in any case, there must be incentive for the miners

• e.g. in bitcoin, miners get newly-minted coins and
transaction fees

AllNet

• See this 4-minute talk at the March 30th, 2016, Wetware
Wednesday

http://www2.hawaii.edu/~esb/2016spring.ics651/allnet-talk.pdf

• See also

http://alnt.org/

http://www2.hawaii.edu/~esb/2016spring.ics651/allnet-talk.pdf
http://alnt.org/

AllNet status, 2018

• ad-hoc communication between Linux systems of ad-hoc
802.11 WiFi

• DHT used for communication over the Internet

• bandwidth-limited to an average 8KB/second

• priorities let us forward own packets even when bandwidth
is limited

• trace mechanism for debugging, similar to ping+traceroute

 b1.01/16 0 hop
 b3.00/16 1 hop
 b4.00/16 2 hop
 b5.00/16 3 hop 2.519748s rtt

transport layer

• provides at least the demultiplexing function: between two IP
hosts there can be many connections (socket pairs),
identified by pairs of port numbers

• mostly, TCP for stream- and connection-oriented reliable
transmission, UDP for everything else

• TCP provides additional functions, particularly flow control
and congestion control

• also SCTP, RTP

TCP basics

• reliable byte stream

• requires sequence and acknowledgment numbers

• TCP is based on cumulative acks, but has a Selective
Ack option

• also requires state on the endpoints to keep track of
sequence numbers and buffers

• state allocation and deallocation is explicit in TCP, letting the
application figure out when to open and close connections

• explicit management of each receiver buffer: the TCP
window

TCP details

• each byte (and the SYN and FIN bits) has its own sequence number
• the sequence number in the packet is the sequence number of the first
data byte (or SYN/FIN) in the packet
• the corresponding ACK adds the sequence number and the number of
bytes (+SYN/FIN) in the packet
• for sender, left edge of window is ack number received, right edge is
ack+window-1
• TCP adaptive timer
• Karn algorithm (do not use retransmitted segments in RTT estimation),
Nagle algorithm (only send full segments or when everything is acked, or
after a timeout)
• delayed acks
• TCP checksum, pseudo-header
• TCP header, including congestion control bits, urgent pointer
• zero window, silly window syndrome
• for full-speed transmission, window must be larger than
bandwidth*delay product

congestion control

• congestion collapse in the 70's and 80s

• AIMD: additive increase, multiplicative decrease

• round-trip-time (RTT) TCP congestion window into rate
control

• ways of detecting congestion before it occurs: increase in
RTT

• TCP Reno: aggressive window decrease, slightly less
aggressive when fast retransmit is triggered by duplicate acks

• TCP Reno always waits until a packet is lost (probably to
congestion) before slowing down

• TCP Vegas: slow down linearly if the RTT is above
minimum, increase linearly otherwise

queueing and fairness

• FIFO: packets added to end of queue, dropped if queue is
full

• Random Early Discard attempts to slow down TCP flows
before queue is full

• priority queues can favor some classes of traffic

• global fairness is generally impossible, but can be
approximated

• local fairness is easier, but it favors flows that cross fewer
congested routers

• fair queueing tries to send the same number of bits per unit
time for every flow that has data to send

other transport protocols

• Stream Control Transmission Protocol

• Real Time Protocol and Real Time Control Protocol

• Real Time Streaming Protocol

• Session Initiation Protocol

project 2

• simplified TCP

• buffering, windows, threads

• implemented reliable transmission

• implemented three-way handshake, closing connections

• implemented the sockets API

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

