

ICS 332 Operating Systems
review for exam 2

● exam will be Monday, October 29th, 2018
● same general format as exam 1
● questions may be from:

● the lectures (lecture notes, material linked from the
web page)

● the assignments
● the textbook

● answering questions may require knowing the material
that was already tested in exam 1

Outline

● scheduling of processes and threads
● race conditions
● synchronization primitives, including atomic operations,
spinlocks, mutexes, and java synchronized methods
● deadlocks
● counting, addressing, exponents (and 2x), logarithms
● main memory, swapping
● segmentation, and standard Unix segments
● allocation of contiguous blocks of memory
● static vs. dynamic loading, static vs. dynamic linking
● virtual memory

Schedulers

● process scheduling is very similar to thread scheduling
● but the context switch for threads is more lightweight
● and can be done by user code

● no single “best” scheduling policy
● long-term scheduler decides when to submit jobs to a
system, short-term scheduler decides which task to execute
next
● CPU-intensive tasks vs. I/O-intensive tasks
● process state machine: running, ready, blocked/waiting

● also terminated (zombie), and others
● preemptive scheduler (time quantum), non-preemptive
● round-robin with priorities, but also many other algorithms

Race Conditions

● a race condition is when multiple threads are
accessing shared memory
● operations that look atomic at the programming-
language level, are not atomic at the machine level
● typical concern: incrementing a variable is not atomic

● a value in a thread pre-empted long ago can still be
stored back to memory!

● any section of code that assumes shared memory is in
a consistent state is a critical section
● only one critical section should execute at a given time

● for a given logical unit of shared memory

Syncronization Primitives

● atomic operations
● e.g. test-and-set, or compare-and-swap, are often

provided as machine instruction by the architectures
● spinlocks

● loop (perhaps up to a fixed number of times) until the
lock is freed

● perhaps yield/suspend if the lock is not available
● mutexes

● lock and unlock primitives
● only one task can hold the lock at any time

● java synchronized methods
● only one thread at a time can execute the

synchronized method

Deadlocks

● three conditions:
● mutual exclusion
● no preemption
● circular requests

● prevention: avoid circular requests
● programmer: when requesting multiple locks, request

them all at the same time, or in a specific sequence
● avoidance

● scheduling: safe sequence
● claim edges

● detection and recovery
● kill one or more deadlocked processes until the

deadlock goes away

Counting, Addressing, Exponents,
Powers of two, Logarithms

● counting: bits and bytes, KB and KiB, MiB, GiB, TiB, ...
● addressing: how many bits do you need to address n
things?

● answer: ceiling (log
2
 n)

● exponents
● powers of 2

should know 21, 22, 23, 24, 25, 26, 27, 28, 29, 210

● logarithms and the number of digits:
● if n is written using d digits (in base b), then
● d – 1 ≤ log

d
 n < d

Main Memory

● main memory
● absolute addressing and PC-relative addressing
● memory virtualization: the address seen by the program
is different from the address seen by the hardware
● can be done with a base register which is added to
every address
● swapping: the virtual address space may be on disk
rather than in memory

● (relevant parts of) the swapped-out process must be
brought back into memory before the process can
execute or load or store data

Segmentation

● an address includes a segment number and an offset
● a Memory Management Unit translates virtual to
physical addresses
● the MMU uses the segment number to:

● compare the offset to the per-segment limit register
● add the per-segment base register to the offset
● the segment number may be implicit or explicit – the

x86 architecture has both
● segments may be used for unix-like segments (text,
data, heap, and stack) or may be used for individual data
structures
● either way, overflow and underflow are detected by the
MMU

Standard Unix Segments

● text segment: the code to execute
● with dynamic linking or loading, may have more than

one text segment, but the official text segment is the
one with the main function/method

● data segment: global variables
● the values for initialized variables are in the executable
● all other global variables initialized to zero

● heap segment: dynamic memory allocation
● stack segment: function/method call parameters and
return addresses, local variables

Memory Allocation

● assume you want to allocate contiguous areas of
memory
● or contiguous areas of the address space (the problem
is the same)
● once you have non-contiguous allocated areas of
memory, in-between them are areas of free memory
● this free memory may be sufficient for the next
allocation, but no single block is large enough:

● give up (malloc fails, or asks the OS for more
memory)

● relocate (some garbage collectors do this)
● first fit, best fit, worst fit

Static vs. Dynamic
Loading and Linking

● dynamic loading:
● user code loads a library and calls functions/methods

from that library
● explicit code in the user program

● dynamic linking:
● compiler records that user code calls a library, but

does not link to it until runtime
● at runtime, each call to a library stub must be replaced

by a call to the actual library function or method

Virtual Memory

● break up allocations into smaller units, use base and
offset to address each unit

● a kind of segmentation
● allocating variable-sized blocks of memory is NP-hard
● so instead, allocate fixed-sized pages

● fixed-size means no need to keep per-page limit
● with page size a power of two (2n), the low order n bits
of the address are the page offset
● the remaining high order bits are the Virtual Page
Number or the Frame Number
● page table has one entry per virtual page
● there will be more virtual memory in the next few
lectures

Suggestions for Doing Well

● sleep well the night before the exam
● review all the material well in advance
● review again on the day of the exam
● practice problems
● review, understand the homeworks!
● read, understand the textbook!

● and practice problems, at least to the point of
sketching a solution

● read, understand the lecture notes!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

