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Conclusion (of the previous module)

Assumption: Each process is in a contiguous address space

Good: Address virtualization is simple (base register)

Bad: No “best” memory allocation strategies

First Fit Worst Fit, Best Fit, others??

Worse: Fragmentation can be very large

RAM is wasted

Even Worse: There can be process starvation in spite of sufficient
available RAM due to fragmentation

100 1MiB holes don’t allow a 100MiB process to run!

Conclusion: Our base assumption is flawed!

So.... address spaces shouldn’t be contiguous???
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There is enough room for P4 if we “chop it up”!
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The solution

The solution: Break up the process address spaces into smaller
chunks!

Chunks of variable size?

Well-known problem in Computer Science: Bin Packing
Known to be NP-Hard...
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What you don’t want to say

From ”Computers and Intractability: : A Guide to the Theory of NP-Completeness”, Garey M.R.

and Johnson, D.S.; W.H. Freeman and Co Publisher, 1979. ISBN 0-7167-1045-5
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What you wish you could say

From ”Computers and Intractability: : A Guide to the Theory of NP-Completeness”, Garey M.R.

and Johnson, D.S.; W.H. Freeman and Co Publisher, 1979. ISBN 0-7167-1045-5
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What you can say for an NP-hard problem

From ”Computers and Intractability: : A Guide to the Theory of NP-Completeness”, Garey M.R.

and Johnson, D.S.; W.H. Freeman and Co Publisher, 1979. ISBN 0-7167-1045-5
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Computational Complexity in One Slide

P problem: A decision problem where the “yes” or “no” answer can
be decided in polynomial time (= polynomial number of operations
relative to the input size), e.g., is 20 the maximum value in an array
of n integers?

NP problem: An optimization problem where a solution can be
verified in polynomial time, e.g., traveling salesman (No known
polynomial-time algorithm to compute the route, but easy to check
whether a route is a solution)

NP-hard problem: problem which is at least as hard as the hardest
NP problems. It is suspected that there are no polynomial-time
algorithms that can solve NP-hard problems, but this has never been
proven. It is not known if P!=NP or if P=NP: $1M+posterity if you
prove it (please wait after the final)

A typical NP-hard problem: Bin Packing

Conclusion for OS design: Variable-size chunks are a bad idea
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Pages

Let’s use same-size chunks

Easier to pack same-size boxes size into
bins (not NP-hard!)

We call these chunks the process’ pages

The process address space is split into
fixed-size pages, a policy called paging

The physical memory is split in fixed-size
frames (frame size = page size)

A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

A frame is physical: Physical Frame Number
(PFN)

A page can be placed in any free frame

And just like that, we have non-contiguous
memory allocation

Kernel

Kernel

P1 − page0

P1 − page1

P1 − page2

P2 − page0

P2 − page1

P2 − page2

P2 − page3

P4 − page2

P4 − page0

P4 − page1

We still have internal fragmentation, but never external fragmentation!
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(Virtual) Page Number

When the CPU issues a virtual address, this address is split into two
parts:

00110101101111011110

Offset = 3500VPN = 123

The virtual/logical page number: p
The offset within the page: d

i.e., instead of “read the value at address x” we think of it as “read
the value at offset d in page p”

The process still has the illusion of a contiguous address space
starting at page 0, continuing at page 1, etc.

But in reality (i.e., in the physical RAM), each page is in a memory
frame anywhere: We say “page p is in frame f ”

Obvious Question: how do we know in which frame a page is??
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Page-to-Frame Translation

The Virtual Page Number (VPN) has to be translated to the
corresponding Physical Frame Number (PFN)

This is more sophisticated address translation scheme than what we
saw in the previous module for contiguous memory allocation

Remember from the previous slide: instead of “read the value at
address x”, a program program does “read the value at offset d in
page p”

Therefore we need to keep track for each process of the mapping
between each one of its pages and the physical frame that page is in

Do this end, each process has a page table...
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Page Table Example

Page 0

Page 1

Page 2

Page 3

Logical
memory

Page Frame
0 1
1 4
2 3
3 7

Page
Table

Frame 44

Frame 33

Frame 22

Frame 11

Kernel0

F#

Frame 55

Frame 66

Frame 77

Physical Memory

Page 0

Page 1

Page 2

Page 3
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Page Size

The page size is defined by the architecture

x86-64: 4 KiB, 2 MiB, and 1 GiB
ARM: 4 KiB, 64 KiB, and 1 MiB

The page size in bytes is always a power of 2

The pagesize command gives you the page size on UNIX-like
systems

For instance, on my laptop: 4096

You can easily reconfigure your OS to use a different page size

But that page size has to be supported by the hardware

We’ll understand why you may want smaller/bigger pages later...
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Page Size: Address Decomposition

Say the size of the logical address space is 2m bytes

Say a page is 2n bytes (n < m), then...

=⇒ The n low-order bits of a logical address are the offset into the page
(offset ranges between 0 and 2n − 1, each one corresponding to a
byte in the page)

=⇒ The remaining m − n high-order bits are the logical page number

Let’s see this on an example...
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Example

Physical memory size = 25 = 32 bytes

How many bits in a physical address?

How many bits are necessary to address 25

thingies?

5 bits

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
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Example

Memory size = 25 = 32 bytes

5-bit physical addresses

Say we pick frame size = 4 bytes

e.g., Frame #2 contains values at
physical addresses 8, 9, 10,11

Therefore we all pick page size = 4
bytes

0 - 00000
1 - 00001
2 - 00010
3 - 00011

4 - 00100
5 - 00101
6 - 00110
7 - 00111

8 - 01000
9 - 01001

10 - 01010
11 - 01011

12 - 01100
13 - 01101
14 - 01110
15 - 01111

16 - 10000
17 - 10001
18 - 10010
19 - 10011

20 - 10100
21 - 10101
22 - 10110
23 - 10111

24 - 11000
25 - 11001
26 - 11010
27 - 11011

28 - 11100
29 - 11101
30 - 11110
31 - 11111
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Example

25 = 32 bytes of RAM

5-bit physical addresses

4-byte frames

How many 4-byte frames are there?

25(bytes)
22(bytes/frame) = 23 = 8 frames

@ Frame

0 - 00000

Frame 0
1 - 00001
2 - 00010
3 - 00011

4 - 00100

Frame 1
5 - 00101
6 - 00110
7 - 00111

8 - 01000

Frame 2
9 - 01001

10 - 01010
11 - 01011

12 - 01100

Frame 3
13 - 01101
14 - 01110
15 - 01111

16 - 10000

Frame 4
17 - 10001
18 - 10010
19 - 10011

20 - 10100

Frame 5
21 - 10101
22 - 10110
23 - 10111

24 - 11000

Frame 6
25 - 11001
26 - 11010
27 - 11011

28 - 11100

Frame 7
29 - 11101
30 - 11110
31 - 11111
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Example

25 = 32 bytes of physical RAM

5-bit physical addresses

4-byte physical frames

8 frames in RAM

4-byte pages

Let’s say we have a process with a
16-byte address space

How many pages it this address
space?

16(bytes)
4(bytes/page) = 4 pages

Say the address space contains
values a, b, . . ., p

Say the OS has placed Page 0 into
Frame 5, Page 1 into Frame 6,

Page 2 into Frame 1, and Page 3
into Frame 2.

Therefore, the OS will have
created a page table with 4 entries

for that process

How many bits in a virtual address
for that process?

4 bits (because we have 24 bytes)
2-bit page index

2-bit offset in the page

0 a
1 b
2 c
3 d

4 e
5 f
6 g
7 h

8 i
9 j

10 k
11 l

12 m
13 n
14 o
15 p

p F#

0 5
1 6
2 1
3 2

@ F#

0

0
1
2
3

4 i

1
5 j
6 k
7 l

8 m

2
9 n

10 o
11 p

12

3
13
14
15

16

4
17
18
19

20 a

5
21 b
22 c
23 d

24 e

6
25 f
26 g
27 h

28

7
29
30
31
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Example

What is the logical address of g?

logical @ = (page nbr)*(page
size) + offset

Page=1; Offset=2
(often written 1:2)
= 1×4+2 = 6

What is the physical address of g?
physical @ = (frame nbr)*(frame
size) + offset
Page 1 is in Frame 6,
same offset: 2,
therefore: 6×4+2 = 26

0 a
1 b
2 c
3 d

4 e
5 f
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7 h

8 i
9 j

10 k
11 l

12 m
13 n
14 o
15 p

p f
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In-class Exercise (1)

A computer has 4 GiB of RAM with a page size of 8KiB. Processes have
1 GiB address spaces.

How many bits are used for physical addresses?

How many bits are used for logical addresses?

How many bits are used for logical page numbers?
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In-class Exercise (1)

A computer has 4 GiB of RAM with a page size of 8KiB. Processes have
1 GiB address spaces.

How many bits are used for physical addresses?
Physical RAM: 4GiB = 232 bytes

⇒ 32-bit physical addresses

How many bits are used for logical addresses?
Logical Address space: 1GiB = 230 bytes

⇒ 30-bit logical addresses

How many bits are used for logical page numbers?
Page size = 213 bytes
Number of pages in logical address space: 230/213 = 217

To address 217 things, we need 17 bits
⇒ 17-bit logical page numbers

(and 13-bit offsets)
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In-class Exercise (2)

Logical addresses are 44-bit, and a process can have up to 227 pages.

What is the page size?
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In-class Exercise (2)

Logical addresses are 44-bit, and a process can have up to 227 pages.

What is the page size?

The address space can have up to 244 bytes
There are up to 227 pages
Therefore, a page is 244/227 = 217 bytes
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In-class Exercise (3)

On my computer the page size is 16 KiB, and my process’ address space
is 4GiB.

How many bits are used for the page number in a logical address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging I



In-class Exercise (3)

On my computer the page size is 16 KiB, and my process’ address space
is 4GiB.

How many bits are used for the page number in a logical address?

The address space contains 232 bytes
A page is 214 bytes
Therefore, my address space has 232/214 = 218 pages
Therefore, we need 18 bits for the page number if a logical address
(and we have 14 bits in the offset

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging I



In-class Exercise (4)

A computer has 32-bit physical addresses. The logical page number of a
logical address is 14-bit. A process can have up to a 2GiB address space.
Let’s consider a process with currently a 1GiB address space (i.e., it can
get up to another 1GiB during execution).

What is the page size?

How many entries are there in the process’ page table?
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Another In-class Exercise (4)

A computer has 32-bit physical addresses. The logical page number of a
logical address is 14-bit. A process can have up to a 2GiB address space.
Let’s consider a process with currently a 1GiB address space (i.e., it can
get up to another 1GiB during execution).

What is the page size?
How many bytes in 2GiB (the max address space): 231

Therefore: 31-bit logical addresses
Therefore: 31 - 14 = 17-bit offsets
Therefore: 217 bytes in a page
Therefore: 128KiB pages

How many entries are there in the process’ page table?
The process has a 1GiB = 230-byte address space
Number of pages in the address space: 230/217 = 213

Therefore: there are 213 entries in the page table
(one entry per page)
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In-class Exercise (5)

Logical addresses are 40-bit, and a process can use at most 1/4 of the
physical RAM.

How big is the RAM?

My process has 222 pages, how many bits are used for the “offset”
part of logical addresses?
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In-class Exercise (5)

Logical addresses are 40-bit, and a process can use at most 1/4 of the
physical RAM.

How bit is the RAM?

With 40-bit logical addresses, an address space is at most 240 bytes
So the RAM is 4 times as big: 242 bytes
which is 4TiB

My process has 222 pages, how many bits are used for the “offset”
part of logical addresses?

Since we have 222 pages, 22 bits are used for the page number
Therefore 40 - 22 = 18 bites are used for the offset
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In-class Exercise (6)

Consider a system with 4-byte pages. A process has the following
entries in its page table:

logical physical
0 4
1 5
2 30

What is the physical address of the byte with logical address 2?

What is the physical address of the byte with logical address 9?
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In-class Exercise (6)

Consider a system with 4-byte pages. A process has the following
entries in its page table:

logical physical
0 4
1 5
2 30

What is the physical address of the byte with logical address 2?

The byte with logical address 2 is the 3rd byte in page 0 (because
that page contains the bytes at addresses 0, 1, 2, and 3)
Page 0, according to the page table is in physical frame 4
The first byte of physical frame 0 is at physical address 4× 0 = 0
(the first byte in physical RAM)
The first byte of physical frame 1 is at physical address 4× 1 = 4
(the fifth byte in physical RAM)
...
The first byte of physical frame 4 is at physical address 4× 4 = 16
The 3rd byte of physical frame is thus at address 16 + 2
Therefore, the byte at logical address 2 is at physical address 18
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In-class Exercise (6)

Consider a system with 4-byte pages. A process has the following
entries in its page table:

logical physical
0 4
1 5
2 30

What is the physical address of the byte with logical address 9?

The byte with logical address 9 is in page 9 / 4 = 2 (integer division)

Its offset in that page is 9 % 4 = 1

Page 2 is in frame 30

Therefore, the byte at logical address 2 is at physical address
30× 4 + 1 = 121
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Sharing Memory Pages Across Processes? EASY!

Text 1
Text 2
Text 3
Data 1

P1 address space

3

4

6

1

P1
Page Table

Data 1

Text 1
Text 2

Text 3
Text 1
Text 2
Text 3
Data 2

P2 address space

3

4

6

7

P2
Page Table

Data 1

Text 1
Text 2

Text 3
Data 2

Text 1
Text 2
Text 3
Data 3

P3 address space

3

4

6

10

P3
Page Table

Data 1

Text 1
Text 2

Text 3
Data 2

Data 3

Just insert page table entries that point to the same physical frames!
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Valid bit

So far, I’ve shown page tables like this:

Page Table
P0 14
P1 13
P2 18
P3 20

But in fact, a page table contains entries for all possible pages (up to the
maximum allowed number of pages for a process, as defined by the OS)

So really, it looks like that:

Page Table
P0 14
P1 13
P2 18
P3 20
P4 not used (yet)
P5 not used (yet)
P6 not used (yet)
P7 not used (yet)
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Valid bit

Each page entry is augmented by a valid bit

Set to valid if the process is allowed to access the page
(i.e. is the page in the process address space)

Set to invalid otherwise

So page tables look like this:

Page Table
P0 14 X
P1 13 X
P2 18 X
P3 20 X
P4 xx -
P5 xx -
P6 xx -
P7 xx -

If the process references a page whose entry’s valid bit is not set,
then a trap is generated (and the process is killed)
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What about Fragmentation?

No external fragmentation!!

This is of course the HUGE advantage of paging

Only internal fragmentation
Worst case: A process address space is n pages plus 1 byte

In this case, we waste 1 page minus 1 byte

Average case: Uniform distribution of address space sizes: 50%

i.e., on average we waste 1/2 page per process

Using smaller pages reduces internal fragmentation

But large pages have advantages:

Smaller page tables (and less lookup overhead)
Loading one large page from disk takes less time than loading many
small ones

Typical sizes: 4KiB, 8KiB (Linux: pagesize)

Modern OSes: multiple page sizes support (Linux: Huge pages;
Mac: Superpages; Windows: Large pages) through hardware
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Frames Management

The OS needs to keep track of the frames

Which frames are used (and by which processes?)
Which frames are free?

The OS thus has a data structure: the free frame list

Much simpler than a list of holes with different sizes

As done in the previous “Main Memory” module

When a process needs a frame, then the OS takes a frame from the free frame
list and allocate them to a process

Free-frame list = {14, 13, 18, 20, 15}
13 14 15 18 20

Process creation: Needs 4 pages: P0, P1, P2, P3

Free-frame list = {15}

P1 P0 15 P2 P3

Page Table
P0 14
P1 13
P2 18
P3 20
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Segmentation and Paging: e.g., IA 32/64

The Intel architecture provides both segmentation and paging

A logical/virtual address is transformed into a linear address via
segmentation

logical address = (segment selector, segment offset)

A linear address is transformed into a physical address via paging

linear address = (page number level-1, p-2, p-3, p-4, offset)

See OSTEP: Advanced Page Tables for full details

CPU
Segmentation

Unit

Logical
address Paging

Unit

Linear
address Physical

Memory

Physical
address
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Conclusion

Paging is great!

No external fragmentation
Easy to share pages among processes

Mechanisms:

Each process as a page table
Each page table entry maps a logical page to a physical frame
Each page table entry has a valid bit
Address translation is based on the page table
The OS manages the list of free frames, and gives out frames to
processes

We can now do Question #2 of Homework #8...

In the next set of lecture notes, we look at some challenges with
paging and how we deal with them
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