
Making Address Spaces Smaller
ICS332 — Operating Systems

Henri Casanova (henric@hawaii.edu)

Spring 2018

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Smaller Address Spaces

Having small address spaces is always a good idea

This is good for swapping: don’t swap as often (because if address
spaces are small, then RAM looks bigger), not as slow to swap
(because reading/writing a smaller address space from/to disk is
faster)

Three common-place techniques:
Dynamic Memory Allocation

Ask programs to tell the OS exactly how much memory they need
(malloc, new) so that we don’t always allocate the maximum allowed
RAM to each process
You all know about this one

Dynamic Loading

Show of hands, who’s heard of this?

Dynamic Linking

Show of hands, who’s heard of this?

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Smaller Address Spaces

Having small address spaces is always a good idea

This is good for swapping: don’t swap as often (because if address
spaces are small, then RAM looks bigger), not as slow to swap
(because reading/writing a smaller address space from/to disk is
faster)

Three common-place techniques:
Dynamic Memory Allocation

Ask programs to tell the OS exactly how much memory they need
(malloc, new) so that we don’t always allocate the maximum allowed
RAM to each process
You all know about this one

Dynamic Loading

Show of hands, who’s heard of this?

Dynamic Linking

Show of hands, who’s heard of this?

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Dynamic Loading

Dynamic loading: only load code/text when it’s needed

Dynamic loading is the programmer responsibility

The OS is not involved, although it provides tools to make dynamic
loading possible

Supported in all (decent) programming languages / OSes:
in C/C++:

POSIX: dlopen, dlsym...
Windows: LoadLibrary

e.g. in Python (let’s look at this one...)

import statement anywhere in the program!

e.g. in Java

ClassLoader class and others

Dynamic unloading is usually possible

Note: We talk of dynamic loading but not of static loading (the
default behavior)

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller

https://henricasanova.github.io/ics332_spring2018/morea/MainMemory/sources/dynamic_loading/dynamic_loading.py
https://henricasanova.github.io/ics332_spring2018/morea/MainMemory/sources/dynamic_loading/DynamicClassLoading.tar.gz


Static / Dynamic Linking

Static Linking is the historical way of reusing code

Add the assembly code of useful functions (printf...) collected in an
archive or library to your own executable.
e.g., libc.a for Linux; MSVCRT.LIB for Windows)

Example on Linux: gcc -static HelloWorld.c -o HelloWorld

nm HelloWorld; objdump -d HelloWorld

Issue 1: Large text

On my Linux VM, the HelloWorld executable is 892 KiB!

Issue 2: Some code is (very likely) duplicated in memory

My program is (very likely) not the only one to use printf!

Key idea: Why not share text (i.e., code) between processes in a
similar way as data can be shared through shared memory?

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Static / Dynamic Linking

Static Linking is the historical way of reusing code

Add the assembly code of useful functions (printf...) collected in an
archive or library to your own executable.
e.g., libc.a for Linux; MSVCRT.LIB for Windows)

Example on Linux: gcc -static HelloWorld.c -o HelloWorld

nm HelloWorld; objdump -d HelloWorld

Issue 1: Large text

On my Linux VM, the HelloWorld executable is 892 KiB!

Issue 2: Some code is (very likely) duplicated in memory

My program is (very likely) not the only one to use printf!

Key idea: Why not share text (i.e., code) between processes in a
similar way as data can be shared through shared memory?

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Static / Dynamic Linking

Static Linking is the historical way of reusing code

Add the assembly code of useful functions (printf...) collected in an
archive or library to your own executable.
e.g., libc.a for Linux; MSVCRT.LIB for Windows)

Example on Linux: gcc -static HelloWorld.c -o HelloWorld

nm HelloWorld; objdump -d HelloWorld

Issue 1: Large text

On my Linux VM, the HelloWorld executable is 892 KiB!

Issue 2: Some code is (very likely) duplicated in memory

My program is (very likely) not the only one to use printf!

Key idea: Why not share text (i.e., code) between processes in a
similar way as data can be shared through shared memory?

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Dynamic Linking

In spirit very similar to dynamic loading

But the OS is in charge of loading the code

While also means that the OS needs to be told where to load it (at
compile time)

The code is shared in shared libraries:

e.g., libc.so for Linux (so = shared object)
MSVCRT.DLL for Windows (DLL = Dynamic-link library)

Linux example: gcc -shared -fPIC HelloWorld.c -o

HelloWorld

nm HelloWorld; objdump -d HelloWorld

On my Linux VM, the HelloWorld executable is 8.5KiB (compared
to the 892KiB statically linked one)!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Dynamic Linking

In spirit very similar to dynamic loading

But the OS is in charge of loading the code

While also means that the OS needs to be told where to load it (at
compile time)

The code is shared in shared libraries:

e.g., libc.so for Linux (so = shared object)
MSVCRT.DLL for Windows (DLL = Dynamic-link library)

Linux example: gcc -shared -fPIC HelloWorld.c -o

HelloWorld

nm HelloWorld; objdump -d HelloWorld

On my Linux VM, the HelloWorld executable is 8.5KiB (compared
to the 892KiB statically linked one)!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Dynamic Linking

In spirit very similar to dynamic loading

But the OS is in charge of loading the code

While also means that the OS needs to be told where to load it (at
compile time)

The code is shared in shared libraries:

e.g., libc.so for Linux (so = shared object)
MSVCRT.DLL for Windows (DLL = Dynamic-link library)

Linux example: gcc -shared -fPIC HelloWorld.c -o

HelloWorld

nm HelloWorld; objdump -d HelloWorld

On my Linux VM, the HelloWorld executable is 8.5KiB (compared
to the 892KiB statically linked one)!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – How does it work?

When dynamic linking is enabled, the linker just puts a stub in the
binary for each shared library routine reference

That stub is a piece of code that:

checks whether the routine is loaded in memory
if not, then loads it into memory “shared” (with all processes)
then replaces itself with a simple call to the routine
future calls will be “for free”

Chances are that when you run HelloWorld, the printf code is
already in memory: ⇒ Save space! ⇒ Save time!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – How does it work?

When dynamic linking is enabled, the linker just puts a stub in the
binary for each shared library routine reference

That stub is a piece of code that:

checks whether the routine is loaded in memory
if not, then loads it into memory “shared” (with all processes)
then replaces itself with a simple call to the routine
future calls will be “for free”

Chances are that when you run HelloWorld, the printf code is
already in memory: ⇒ Save space! ⇒ Save time!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – How does it work?

When dynamic linking is enabled, the linker just puts a stub in the
binary for each shared library routine reference

That stub is a piece of code that:

checks whether the routine is loaded in memory
if not, then loads it into memory “shared” (with all processes)
then replaces itself with a simple call to the routine
future calls will be “for free”

Chances are that when you run HelloWorld, the printf code is
already in memory:

⇒ Save space! ⇒ Save time!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – How does it work?

When dynamic linking is enabled, the linker just puts a stub in the
binary for each shared library routine reference

That stub is a piece of code that:

checks whether the routine is loaded in memory
if not, then loads it into memory “shared” (with all processes)
then replaces itself with a simple call to the routine
future calls will be “for free”

Chances are that when you run HelloWorld, the printf code is
already in memory: ⇒ Save space!

⇒ Save time!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – How does it work?

When dynamic linking is enabled, the linker just puts a stub in the
binary for each shared library routine reference

That stub is a piece of code that:

checks whether the routine is loaded in memory
if not, then loads it into memory “shared” (with all processes)
then replaces itself with a simple call to the routine
future calls will be “for free”

Chances are that when you run HelloWorld, the printf code is
already in memory: ⇒ Save space! ⇒ Save time!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – Easy Updates

Haven’t you wondered how come you can update your system (i.e.,
libraries) and not have to recompile all your executables???

This would be insanely inconvenient!

Provided the APIs haven’t not changed you can just:

Replace a shared library (.so, .dll) by a new one
Ask the system to “reload” it
And now it all magically works!
If the update was critical (i.e., security) then a reboot may be
required

Dynamic Linking requires help from the OS

To break memory isolation and allow shared text segments among
processes
We will see that this comes “for free” with virtual memory (next
Module)

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – Easy Updates

Haven’t you wondered how come you can update your system (i.e.,
libraries) and not have to recompile all your executables???

This would be insanely inconvenient!

Provided the APIs haven’t not changed you can just:

Replace a shared library (.so, .dll) by a new one
Ask the system to “reload” it
And now it all magically works!
If the update was critical (i.e., security) then a reboot may be
required

Dynamic Linking requires help from the OS

To break memory isolation and allow shared text segments among
processes
We will see that this comes “for free” with virtual memory (next
Module)

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Shared Libraries – Easy Updates

Haven’t you wondered how come you can update your system (i.e.,
libraries) and not have to recompile all your executables???

This would be insanely inconvenient!

Provided the APIs haven’t not changed you can just:

Replace a shared library (.so, .dll) by a new one
Ask the system to “reload” it
And now it all magically works!
If the update was critical (i.e., security) then a reboot may be
required

Dynamic Linking requires help from the OS

To break memory isolation and allow shared text segments among
processes
We will see that this comes “for free” with virtual memory (next
Module)

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Details of Shared Libraries

On Linux system the ldd command will print the shared libraries
required by a program

For instance, let us look at the shared libraries used by /bin/date

The compiler adds stuff in the executable so that ldd can find this
information and display it

It turns out that, in Linux, you can override functions from loaded
shared libraries by creating yourself a small shared library

Let’s try this to do something useful...

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Example: C and Memory Leaks

As you know, in C you allocate/free memory with malloc() and
free()

Every call to malloc() should have a matching call to free()

This is easier said than done, as you might know

But perhaps you didn’t care about memory leaks when writing C

Wouldn’t it be great if somehow the code counted calls to
malloc() and free()?

Let’s do that with a small shared library...

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Example: C and Memory Leaks

As you know, in C you allocate/free memory with malloc() and
free()

Every call to malloc() should have a matching call to free()

This is easier said than done, as you might know

But perhaps you didn’t care about memory leaks when writing C

Wouldn’t it be great if somehow the code counted calls to
malloc() and free()?

Let’s do that with a small shared library...

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Example: C and Memory Leaks

As you know, in C you allocate/free memory with malloc() and
free()

Every call to malloc() should have a matching call to free()

This is easier said than done, as you might know

But perhaps you didn’t care about memory leaks when writing C

Wouldn’t it be great if somehow the code counted calls to
malloc() and free()?

Let’s do that with a small shared library...

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



First Step: Overriding exit()

I’ve written the code for a shared library that overrides the exit()

library function

To create a shared library .so file:

gcc -fPIC -DPIC -c custom shared library.c -o

custom shared library.o

ld -shared -ldl -o custom shared library.so

custom shared library.o

Then, one can enable the shared library by setting th LD PRELOAD

environment variable to the path of the shared library

I’ve put together the code above and a Makefile that does
everything, including compiling a small program that just does an
exit (See the ”Example source code” reading in this module)

Let’s look at all this and run it...

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Overriding malloc() and exit()!

Let’s now augment our custom shared library to override malloc()

and free()

The code is on the web site (in the ”Example source code” reading),
but let’s try to do it lilive...

Objective: keep counts of calls to malloc() and calls to free(),
and print a warning if they don’t match!

Let’s then try to run a leaky C program, a Java program, make, etc.

Note we don’t have to re-compile any of those programs!

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



This is very useful!

We could augment what we just did to make it way more useful and
user friendly

For instance, we could find out where calls to malloc() are placed
(i.e., which lines of code) and then report on which ones were not
freed!

Turns out, tools exist that do this already: valgrind, purify...

Let’s run valgrind on our leaky C program...

More generally: You’re not happy with the performance of one
function in a standard lib? Rewrite it and replace it on-the-fly!

And since this is very useful / powerful, it can also be dangerous

If you have a bug in your shared library, then you’re stuck and
nothing will work (e.g., “you broke malloc()!!”)
Which is why we test with the LD PRELOAD environment variable
instead of making the new shared library the default system-wide

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



This is very useful!

We could augment what we just did to make it way more useful and
user friendly

For instance, we could find out where calls to malloc() are placed
(i.e., which lines of code) and then report on which ones were not
freed!

Turns out, tools exist that do this already: valgrind, purify...

Let’s run valgrind on our leaky C program...

More generally: You’re not happy with the performance of one
function in a standard lib? Rewrite it and replace it on-the-fly!

And since this is very useful / powerful, it can also be dangerous

If you have a bug in your shared library, then you’re stuck and
nothing will work (e.g., “you broke malloc()!!”)
Which is why we test with the LD PRELOAD environment variable
instead of making the new shared library the default system-wide

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



This is very useful!

We could augment what we just did to make it way more useful and
user friendly

For instance, we could find out where calls to malloc() are placed
(i.e., which lines of code) and then report on which ones were not
freed!

Turns out, tools exist that do this already: valgrind, purify...

Let’s run valgrind on our leaky C program...

More generally: You’re not happy with the performance of one
function in a standard lib? Rewrite it and replace it on-the-fly!

And since this is very useful / powerful, it can also be dangerous

If you have a bug in your shared library, then you’re stuck and
nothing will work (e.g., “you broke malloc()!!”)
Which is why we test with the LD PRELOAD environment variable
instead of making the new shared library the default system-wide

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller



Conclusions

In the previous set of lecture notes we saw that we may have to
swap because we run out of RAM

Making address spaces as small as possible is thus a good idea

Won’t have to swap as much
Not as costly to swap when swapping is needed

Bottom Line: do not waste bytes!

Part of this is on the developer:

Just use space-efficient data structures
Use Dynamic Memory Allocation

Part of this is provided by languages/compilers/OS:

Dynamic loading
Dynamic linking

We’ll have a QUIZ on this entire module next week

Henri Casanova (henric@hawaii.edu) Making Address Spaces Smaller


