
ICS332 - Spring 2018
Operating Systems

File System
Implementation

File System Implementation
 The file system should provide an

efficient implementation of the
interface it defines
 storing, locating, retrieving data

 The problem: define data structures
and algorithms to map the logical FS
onto the disk

 some data structures live on disk
 some data structures live (temporarily)

in memory
 Typical layer organization:

 Good for modularity and code re-use
 Bad for overhead

 Some layers are hardware, some
are software, some are a
combination

File System Implementation

 I/O Control
 Device drivers and interrupt

handlers
 Input from above:

 Read physical block #43
 Write physical block #124

 Output below:
 Writes into device controller’s

memory to enact disk reads
and writes

 React to relevant interrupts

File System Implementation

 Basic file system
 Allocates/maintains various

buffers that contain file-system,
directory, and data blocks

 These buffers are caches and
are used for enhancing
performance

 Input from above:
 Read physical block #43
 Write physical block #421

 Output below:
 Read physical block #43
 Write physical block #421

File System Implementation

 File-organization module
 Knows about logical file blocks

(from 0 to N) and corresponding
physical file blocks: it performs
translation

 It also manages free space
 Input from above:

 Read logical block 3
 Write logical block 17

 Output below:
 Read physical block 43
 Write physical block 421

File System Implementation
 Logical file system

 Keep all the meta-data
necessary for the file system

 i.e., everything but file content
 It stores the directory structure
 It stores a data structure that

stores the file description (File
Control Block - FCB)

 Name, ownership, permissions
 Reference count, time stamps,

pointers to other FBCs
 Pointers to data blocks on disk

 Input from above:
 Open/Read/Write filepath

 Output to below:
 Read/Write logical blocks

File Systems
 Most OSes support many file systems

 e.g., the ISO 9660 file system standard for CD-ROM
 UNIX:

 UFS (UNIX FS), based on BFFS (Berkeley Fast FS)
 Windows:

 FAT, FAT32, and NTFS
 Basic Linux supports 40+ file systems

 Standard: ext2 and ext3 (Extended FS)
 An active area of research and development

 Distributed File Systems
 Not new, but still a lot of activity

 High-Performance File Systems
 The Google File System

File System Data Structures
 The file system comprises data structures
 On-disk structures:

 An optional boot control block
 First block of a volume that stores an OS
 boot block in UFS, partition boot sector in NTFS

 A volume control block
 Contains the number of blocks in the volume, block size, free-block count, free-block

pointers, free-FCB count, FCB-pointers
 superblock in UFS, master file table in NTFS

 A directory
 File names associated with an ID, FCB pointers

 A per-file FCB
 In NTFS, the FCB is a row in a relational database

 In-memory structures:
 A mount table with one entry per mounted volume
 A directory cache for fast path translation (performance)
 A global open-file table
 A per-process open-file table
 Various buffers holding disk blocks “in transit” (performance)

Virtual File System
 You’ll hear of VFS (Virtual File System)
 This is simply about software engineering (modularity and code-reuse)

 To support multiple types of FS, the OS expects a specific interface, the VFS
 Each FS implementation must expose the VFS interface

Directory Implementation

 Linear List
 Simply maintain an on-disk doubly-linked list of

names and pointers to FCB structures
 The list can be kept sorted according to file

name
 Upon deletion of a file, the corresponding entry

can be recycled (marked unused or moved to a
list of free entries)

 Problem: linear search is slow
 Hash Table

 A bit more complex to maintain
 Faster searches

Allocation Methods

 Question: How do we allocate disk blocks to files?
 The simplest: Contiguous Allocation

 Each file is in a set of contiguous
blocks

 Good because sequential access
causes little disk head movement, and
thus short seek times

 The directory keeps track of each
file as the address of its first block
and of its length in blocks

Contiguous Allocation Problems
 Can be difficult to find free space

 Best Fit, First Fit, etc.
 External fragmentation

 With a big disk, perhaps we don’t care
 Compaction/defrag

 Expensive but doable

 Difficult to have files grow
 Copies to bigger holes under the hood?

 High overhead
 Ask users to specify maximum file sizes?

 Inconvenient
 High internal fragmentation

 Create a linked list of file chunks
 Called an extent

Linked Allocation
 A file is a linked-list of disk

blocks
 Blocks can be anywhere

 The directory points to the first
and last block of the files

 Pointer between internal blocks
are kept on disk and “hidden”

 Solves all the problems of
contiguous allocation

 no fragmentation
 files can grow

Linked Allocation Problems
 Great for sequential access but not so much for direct

access
 A direct access requires quite a bit of pointer jumping

 meaning disk seeks (remember: data structure is on disk!)

 Wastes space
 Say each pointer is 5 bytes, and each block is 512 bytes, then

0.78% of the disk stores pointers instead of data
 Easy to solve by coalescing blocks together, i.e., allowing for

bigger blocks
 But at the cost of larger internal fragmentation

 Poor reliability
 If a pointer is lost or damaged, then the file is unrecoverable
 Can be fixed with a double-linked list, but increases

overhead

The FAT System

 The File-Allocation Table (FAT)
scheme implements block linking
with a separate table that keeps
track of all links

 Solves the problem of having all
pointers scattered over the disk

 Hence much quicker pointer jumping

 Finding a free block is simple: just
find the first 0 entry in the table

 The FAT can be cached in memory
to avoid disk seeks altogether

Indexed Allocation
 All block pointers are brought to a

single location: the index block
 There is one index block per file

 The i-th entry points to the i-th block

 The directory contains the address of
the index block

 Very similar to paging, and same
advantage: easy direct access

 Same advantage, but same problem:
how big is the index block (page
table)?

 Not good to use all our space for
storing index information!

 Especially if many entries are nil
 What if the index is bigger than a

block? (remember page table pages)

 We had one page table per process,
and now one index block per file!!

 There are several solutions

Indexed Allocation

 Linked index:
 To allow for an index block to span multiple disk blocks,

we just create a linked list of disk blocks that contain
pieces of the full index

 e.g., the last word in the first disk block of the index block
is the address of the disk block that contains the next
piece of the index block (easy, right?)

 This adds complexity, but can accommodate any file
size

 Remember that disk space is not as costly as RAM
space, and that the disk is very slow

 Therefore, trading off space for performance and
allowing for large indices is likely a much better trade
off than it would be for RAM

Indexed Allocation

 Multilevel index:
 Just like a hierarchical page table
 If we have 512-byte blocks, and 4-byte pointers, then

we could store 128 entries in a block
 A 3-level scheme can then allow for 1GB files
 A 4-level scheme can then allow for 128GB files

M

outer-index

index table file

Indexed Allocation

 Combined Index:
 For a small file it seems a waste to keep a

large index
 For a medium-sized file it seems a waste to

keep multi-level indices
 How about keeping all options open:

 A few pointers to actual disk blocks
 A pointer to a single-level index
 A pointer to a two-level index
 A pointer to a three-level index

 That way small files don’t even use an index

Indexed Allocation

 The UNIX FCB: the inode

Block size = 512 bytes
Pointer = 4 bytes
Max file size = 12*512
 + 128*512

+ 1282*512
+ 1283*512 bytes

12

In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

(give answer as a sum of terms)

In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

 Direct indirect: 12 * 8KiB
 Single indirect: (8KiB / 4) * 8KiB
 Double indirect: (8KiB / 4) * (8KiB / 4) * 8KiB

 Total: 12 * 213 + 211 * 213 + 211 * 211 * 213

 (which is about 32GiB)

Inodes and Directories

 An inode can describe a file or a directory
 A bit says whether it’s one or the other

 An inode for a directory also points to data
blocks

 But these data blocks happen to contain
<name, pointer to inode> pairs

 These data blocks are searched for names
when doing pathname resolution

 The system keeps an in-memory cache of
recent pathname resolutions

Free Space Management
 Question: How do we keep track of free blocks?
 Simple option: Bitmap

 Keep an array of bits, one bit per disk block
 1 means free, 0 means not free
 Good:

 Simple
 Easy to find a free block (we love bitwise instructions)

 e.g., find the first non-zero word

 Bad:
 The bitmap can get huge
 So it may not be fully cachable in memory

 At this point the number of times we said “but we could perhaps
cache it in memory” should bring home the point that RAM space is
really a premium

 This is what NTFS does

Free Space Management

 Another option: Linked List
 Maintain a chain of free blocks,

keeping a pointer to the first block
 Traversing the list could take

time, but we rarely need to do it

 Remember that FAT deals with
free blocks in the data structure
that keeps the “linked-list” of
non-free blocks

Free Space Management

 Another option: Counting
 Simply keep the address of a free block and

the number of free blocks immediately after it
 Saves space

 Entries are longer
 But we have fewer of them

 These entries can be stored in an efficient data
structure so that chunks of contiguous free
space can be identified

 Although we may do non-contiguous space
allocation, it’s always better to have disk spatial
locality for performance

Efficiency and Performance

 There are many efficiency and performance
issues for file systems (Section 11.6)

 Each aspect of the design impacts
performance, hence many clever
implementation tricks

 One well-known example: inode allocation
 inodes are pre-allocated

 When creating a new file, fields can just be filled
in

 inodes are spread all over the disk
 So that a file’s data can be close to its inode, if

at all possible (minimizing seeks)

Efficiency and Performance

 Caching of disk blocks to take advantage
of temporal locality

 Asynchronous writes
whenever possible

 LRU
 Free-behind
 Read-ahead

 Competes with virtual
memory for disk space!

Consistency Checking
 The File System shouldn’t lose data or become

inconsistent
 It’s a fragile affair, with data structure pointers all over the

place, with parts of it cached in memory

 An abrupt shutdown can leave an inconsistent state
 The system was in the middle of updating some pointers
 Part of the cached metadata was never written back to disk

 Consistency can be checked by scanning all the metadata
 Takes a long time, occurs upon reboot if necessary
 A “necessary” bit is kept up-to-date by the system

 Unix: fsck, Windows: chkdsk
 Bottom line: We allow the system to be corrupted, and we

later attempt repair

Journaling
 Problems with consistency checking:

 Some data structure damaged may not be repairable
 Human intervention is needed to repair the data structure
 Checking a large file system takes forever

 Other option: Log-based transaction-oriented FS (Journaling)
 Log-based recovery:

 Whenever the file system metadata needs to be modified, the sequence
of actions to perform is written to a circular log and all actions are
marked as “pending”

 Then the system proceeds with the actions asynchronously
 Marking them as completed along the way

 Once all actions in a transaction are completed, the transaction is
“committed”

 If the system crashes, we know all the pending actions in all non-
committed transactions, so we can undo all committed actions

 And there are not too many of them
 Writing to the log is overhead, but it’s sequential writing to the log file

Conclusion

 File Systems can be seen as part of or
outside the OS

 File Systems are a complex and active
topic
 File System research papers get published all

the time
 Tons of File System development in R&D
 A lot of discussion of what a file system really is

 Can we weaken the semantic and make it easier to
implement?

 Distributed File Systems
 e.g., file systems over p2p networks?

	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File Systems
	File System Data Structures
	Virtual File System
	Directory Implementation
	Allocation Methods
	Contiguous Allocation Problems
	Linked Allocation
	Linked Allocation Problems
	The FAT System
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	In-Class Exercise
	In-Class Exercise
	Inodes and Directories
	Free Space Management
	Free Space Management
	Free Space Management
	Efficiency and Performance
	Efficiency and Performance
	Consistency Checking
	Journaling
	Conclusion

