
ICS332 - Spring 2018
Operating Systems

File System
Interface

Files and Directories

 Features
 A file system implements the file abstraction

for secondary storage
 It also implements the directory abstraction to

organize files logically

 Usage
 It is used for users to organize their data
 It is used to permit data sharing among

processes and users
 It provides mechanisms for protection

File System
 The term “File System” is a bit confusing

 The component of the OS that knows how to do “file stuff”
 A set of algorithms and techniques
 The content on disk that describes a set of files

 Remember that a disk can be partitioned arbitrarily into logically
independent partitions

 Each partition can contain a file system
 In this case the partition is often called a volume (e.g., C:, A:)

 One can have multiple disks, each with arbitrary partitions, each with a
different file system on it

directory

files

on-disk file
system data

table of contents

File Systems

 Example with 2 disks, and 3 file systems

File and File Type
 A file is data + properties (or attributes)

 Content, size, owner, last read/write time, protection, etc.

 A file can also have a type
 Understood by the File System

 e.g., regular file, logical link, device
 Or understood by the OS

 Executable, shared library, object file, text, binary, etc.

 In Windows a file type is encoded in its name
 .com, .exe, .bat, ...
 Some known to the OS, some just known to applications

 In Mac OS X, each file is associated with a type and the name of the
program that created it

 Done by the create() system call for all files
 Allows for double clicks to remember which program to use

 In Linux a file type is encoded only in its content
 “Magic” numbers, first bytes (#!...)
 Some files have no type and filenames are arbitrary

File Structure
 Question: should the OS know about the structure of a file?

 The more different structures the OS knows about the more
“help” it can provide applications that use particular file types

 But then, the more complicated the OS code is
 And it may be too restrictive: e.g., assume all binary files are

executable!

 Modern OSes support very few files structures:
 Files are sequences of bytes that the OS doesn’t know about

but that have meaning to the applications
 Certain files are executables and must have a specific format

that the OS knows about
 Executable formats have evolved throughout the years,

partly to accommodate dynamic loading
 The OS may expect a certain directory structure defining an

application
 e.g., Mac OS X “application bundles”

Internal File Structure

 We’ve seen that the disk provides the OS
with a block abstraction (e.g., 512 bytes)
 All disk I/O is performed in number of blocks

 Each file is stored in a number of blocks

Internal Fragmentation

File Operations
 A file is an abstraction, i.e., an abstract data type
 As such the OS defines several file operations
 Basic operations

 Creating
 Writing/Reading

 A current-file-position pointer is kept per process
 Updated after each write/read operation

 Repositioning the current-file-position pointer
 This is called a “seek”

 Appending at the end of a file
 Truncating

 Down to zero size
 Deleting
 Renaming

Open Files
 The OS requires that processes open and close files

 Otherwise, the OS would spend its time searching directories for file
names for each file operation

 After an open, the OS copies the file system’s file entry (i.e.,
attributes) into an open-file table that is kept in RAM in the kernel

 The OS keeps two kinds of open-file tables
 One table per process
 One global table for all processes

 A process specifies which file the operation is on by giving an index
in its local table

 The famous “filed” (file descriptor) in Linux
 The OS keeps track of a “reference count” for each open file in the

global table
 Incremented each time a process opens the file
 Decremented each time a process closes the file

 Let’s see an example

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

Data structure that contains
 Location of file on disk

 Block number of the first block
 Number of blocks
 Size in bytes

 Attributes
 permissions
 owner
 time of creation
 date of last modification
 ...

 This is kept on disk, but for now we
take a logical view of it

 Let’s just say it’s “in the OS”, or “in
the File System”

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

Process 1:
 Open File A

13 file pos. ptrrefcount=1

Global table Process 1’s table

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

13 file pos. ptrrefcount=1

Global table Process 1’s table

Process 1:
 Open File A
 Open File C

42 file pos. ptrrefcount=1

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

13 file pos. ptrrefcount=2

Global table Process 1’s table

Process 1:
 Open File A
 Open File C

42 file pos. ptrrefcount=1

Process 2:
 Open File A
 Open File B

Process 2’s table

37 file pos. ptr

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

13 file pos. ptrrefcount=2

Global table Process 1’s table

Process 1:
 Open File A
 Open File C

42 file pos. ptrrefcount=1

Process 2:
 Open File A
 Open File B

Process 2’s table

37 file pos. ptr
15 file pos. ptr

refcount=1

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

refcount=1

Global table Process 1’s table

Process 1:
 Open File A
 Open File C
 Close File A

42 file pos. ptrrefcount=1

Process 2:
 Open File A
 Open File B

Process 2’s table

37 file pos. ptr
15 file pos. ptr

refcount=1

Open File Tables

A

B

C

Disk

OS

file A

file B

file C

Global table Process 1’s table

Process 1:
 Open File A
 Open File C
 Close File A

42 file pos. ptrrefcount=1

Process 2:
 Open File A
 Open File B

 Close File A

Process 2’s table

15 file pos. ptr
refcount=1

File Locking
 Bad things may happen when multiple processes reference

the same file
 Just like when threads reference the same memory

 A file lock can be acquired for a full file or for a portion of a
file

 The OS may require mandatory locking for some files
 e.g., for writing for a log file that many system calls write to

 Typically applications have to implement their own locking
 And of courses there can be deadlocks and all the

messiness of thread synchronization

 Let’s look at the Java example in Fig. 10.1 in the book

File Locking in Java
import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {
 RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
 FileChannel ch = raf.getChannel();
 // this locks the first half of the file - exclusive (one writer)
 exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
 /** Now modify the data . . . **/
 // release the lock
 exclusiveLock.release();

File Locking in Java (cont.)
 // this locks the second half of the file - shared (multiple readers)
 sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);
 /** Now read the data . . . **/
 // release the lock
 sharedLock.release();
} catch (java.io.IOException ioe) {
 System.err.println(ioe);
} finally {
 if (exclusiveLock != null)
 exclusiveLock.release();
 if (sharedLock != null)
 sharedLock.release();
}

}
}

Access Methods
 Sequential Access

 One byte at a time, in order, until the end
 Read next, write next, reset to the beginning

 Direct Access
 Ability to position anywhere in the file
 Position to block #n, Read next, write next
 Block number is relative to the beginning of the file

 Just like a logical page number is relative to the first page in a process’ address space

 Indexed Access
 A file contains an index of “file record” locations
 One can then look for the object in the index, and then “jump” directly to the

beginning of the record

 Linux and Windows: Direct access
 It’s up to you to implement your own application-specific index
 But internally the FS does some indexing of blocks, as we’ll see

 Older OSes provided other, more involved methods, including indexing
 e.g., you could tell the OS more information about the logical structure of your file

Directories
 We’re used to file systems that support

 multiple directory levels
 the notion of a current directory

 Single-Level directory

 Naming conflicts
 Have to pick longer, and longer unique names

 Slow searching

Directories

 Two-Level Directory

 Faster searching
 Still naming conflict for each user

Tree-Structured Directories

Tree-Structured Directories
 More general than 1- and 2-level schemes
 Each directory can contain files or directories

 Differentiated internally by a bit set to 0 for files and 1 for directories
 Each process has a current directory

 Relative paths
 Absolute paths

 Path name translation, e.g., for “/one/two/three”
 Open “/” (the file system knows where that is on disk)
 Search it for “one” and get its location
 Open “one”, search it for “two” and get its location
 Open “two”, search it for “three” and get its location
 Open “three”

 The OS spends a lot of time walking directory paths
 Another reason why one separates “open” from “read/write”
 The OS attempts to cache “common” path prefixs

 But what we have in modern systems is actually more complicated...

Acyclic Graph Directories
 Files/directories can be shared by

directories
 A hard link is created in a directory, to point

to or reference another file or directory
 Identified in the file system as a special file

 The file system keeps track of reference
count for each file, and deletes the file when
the last reference is removed

 A symbolic link does not count toward the
reference count

 You can think of it as an alias for the file (if
you remove the alias, nothing happens)

 If the target file is removed then the alias
simply becomes invalid

 This is the UNIX view of links, as
implemented by the “ln” command

 No hard-linking of directories

 Acyclic is good for quick/simple traversals
 Simple way to prohibit cycles: no hard

linking of directories!
 Used in Linux

General Graph Directory
 In this scheme users can do

whatever they want
 Directory traversals algorithms

must be smarter to avoid infinite
loops

 Garbage collection could be
useful because ref counts may
never reach zero

 But way too expensive in
practice

bogus1

bogus2

Mac OSX Time Machine
 Time Machine is the backup mechanism introduced with Leopard
 It uses hard links

 Every time a new backup is made, a new backup directory is created that contains a
snapshot of the current state of the file system

 Files that haven’t been modified are hard links to previously backed up version
 A new backup should be mostly hard links instead of file copies(space saving)

 When an old backup directory is wiped out, then whatever files have a reference
count of zero are removed (no longer part of more recent data)

t=0

At time t=0, the first
backup is initialized,
meaning that it’s a full
copy of the directory
structure and files

backup 0

Mac OSX Time Machine
 Time Machine is the backup mechanism introduced with Leopard
 It uses hard links

 Every time a new backup is made, a new backup directory is created that contains a
snapshot of the current state of the file system

 Files that haven’t been modified are hard links to previously backed up version
 A new backup should be mostly hard links instead of file copies(space saving)

 When an old backup directory is wiped out, then whatever files have a reference
count of zero are removed (no longer part of more recent data)

t=1

By time t=1, a file has
been modified, another
one is added, an another
one is deleted

backup 0

X

Mac OSX Time Machine
 Time Machine is the backup mechanism introduced with Leopard
 It uses hard links

 Every time a new backup is made, a new backup directory is created that contains a
snapshot of the current state of the file system

 Files that haven’t been modified are hard links to previously backed up version
 A new backup should be mostly hard links instead of file copies(space saving)

 When an old backup directory is wiped out, then whatever files have a reference
count of zero are removed (no longer part of more recent data)

t=1

At time t=1, a new
backup is triggered
by the user

backup 0

X

Mac OSX Time Machine
 Time Machine is the backup mechanism introduced with Leopard
 It uses hard links

 Every time a new backup is made, a new backup directory is created that contains a
snapshot of the current state of the file system

 Files that haven’t been modified are hard links to previously backed up version
 A new backup should be mostly hard links instead of file copies(space saving)

 When an old backup directory is wiped out, then whatever files have a reference
count of zero are removed (no longer part of more recent data)

t=1 backup 0 backup 1

hard links

X copied from
file systemcopied from file

system

Mac OSX Time Machine
 Time Machine is the backup mechanism introduced with Leopard
 It uses hard links

 Every time a new backup is made, a new backup directory is created that contains a
snapshot of the current state of the file system

 Files that haven’t been modified are hard links to previously backed up version
 A new backup should be mostly hard links instead of file copies(space saving)

 When an old backup directory is wiped out, then whatever files have a reference
count of zero are removed (no longer part of more recent data)

backup 0 backup 1

The user can now
remove backup 0

Mac OSX Time Machine
 Advantages

 Extremely simple to implement
 The back up can be navigated in all the normal ways, without

Time Machine
 Provided backups are frequent, they are done by creating

mostly hard links (which is MUCH faster than copying data)

 Drawback
 If you change 1 byte in a 10GB file, then you copy the whole

10GB
 But how often does this happen??

 For efficiency, Mac OSX allows hard linking of directories
 Cycles in the directory hierarchy must be detected, i.e., more

complicated file system code
 Complexity deemed worthwhile by Mac OSX developers

Time Machine on Linux?

 Give how simple and elegant Time Machine is,
one may want to implement it on Linux
 Could be an interesting course project

 But because Linux doesn’t allow hard-linking of
directories, one would have to recreate the whole
directory structure for each backup
 While would take space and, more importantly perhaps,

a lot of time

 Such implementations exist, but if you use a
standard Linux file system that does not allow
cycles in the directory structures, it won’t be
efficient

Hard Links on Linux
 It turns out that, on Linux, whenever a file is opened by a process, a

hard link to the file is created
 Say that process with PID 2233 calls the open() system call to open a

file “/home/casanova/somefile”
 open() returns a “file descriptor”, i.e., an integer, say 55
 At that point, a hard link to “/home/casanova/somefile” is created in

“/proc/2233/fd/55”
 If, while the process is running, “/bin/rm /home/casanova/somefile” is

executed, then the file survives because its reference count is non-zero
 Essentially, you can’t remove the data for a file while a process is using it,

which is probably a good thing

 This allows you to retrieve a file that you’ve erased by mistake as long
as some process has it opened
 You might want to create hard links to your important files anyway

 Let’s try this on a Linux box...

File System Mounting
 There can be multiple file systems
 Each file system is “mounted” at a special location, the mount point

 Typically seen as an empty directory

 When given a mount point, a volume, a file system type, the OS
 asks the device driver to read the device’s directory
 checks that the volume does contain a valid file system
 makes note of the new file system at the specified mount point

 The OS keeps a list of mount points

 Mac OS X: all volumes are mounted in the /Volumes/ directory
 Including temporary volumes on USB keys, CDs, etc.

 UNIX: volumes can be mounted anywhere
 Windows: volumes were identified with a letter (e.g., A:, C:), but

current versions, like UNIX, allow mounting anywhere
 On Linux the “mount” command lists all mounted volumes

Protection
 File systems provide controlled access
 General approach: Access Control Lists (ACLs)

 For each file/directory, keep a list of all users and of all allowed
accesses for each user

 Protection violations are raised upon invalid access
 Problem: ACLs can be very large
 Solution: consider only a few groups of users and only a few

possible actions
 UNIX:

 User, Group, Others not in Group, All (ugoa)
 Read, Write, Execute (rwx)
 Represented by a few bits
 chmod command:

 e.g., chmod g+w foo (add write permission to Group users)
 e.g., chmod o-r foo (remove read permission to Other users)

Conclusion

 In the next set of lecture notes we’ll look at
how a file system is implemented...

	File System Interface
	Files and Directories
	File System
	File Systems
	File and File Type
	File Structure
	Internal File Structure
	File Operations
	Open Files
	Open File Tables
	Open File Tables
	Open File Tables
	Open File Tables
	Open File Tables
	Open File Tables
	Open File Tables
	File Locking
	File Locking in Java
	File Locking in Java (cont.)
	Access Methods
	Directories
	Directories
	Tree-Structured Directories
	Tree-Structured Directories
	Acyclic Graph Directories
	General Graph Directory
	Mac OSX Time Machine
	Mac OSX Time Machine
	Mac OSX Time Machine
	Mac OSX Time Machine
	Mac OSX Time Machine
	Mac OSX Time Machine
	Time Machine on Linux?
	Hard Links on Linux
	File System Mounting
	Protection
	Conclusion

