
Henri Casanova (henric@hawaii.edu)

ICS332 - Fall 2017
Operating Systems

Mass-Storage

Magnetic Disks
! Magnetic disks (a.k.a. “hard drives”) are (still) the most

common secondary storage devices today
! They are “messy”

" Errors, bad blocks, missed seeks, moving parts
! And yet, the data they hold is critical
! The OS used to hide all the “messiness” from higher-level

software
" Programs shouldn’t have to know anything about the way

the disk is built
! This has been done increasingly with help from the hardware

" i.e., the disk controller
! What do hard drives look like?

Hard Drive Structure

Hard Drive access Access
! A hard drive requires a lot of information for an access

" Platter #, sector #, track #, etc.
! Hard drives today are more complicated than the simple picture

" e.g., sectors of different sizes to deal with varying densities and radial
speeds with respect to the distance to the spindle

! Nowadays, hard drives comply with standard interfaces
" EIDE, ATA, SATA, USB, Fiber Channel, SCSI

! The hard drives, in these interfaces, is seen as an array of logical
blocks (512 bytes)

! The device, in hardware, does the translation between the block #
and the platter #, sector #, track #, etc.

! This is good:
" The kernel code to access the disk is straightforward
" The controller can do a lot of work, e.g., transparently hiding bad blocks

! The cost is that some cool optimizations that the kernel could
perhaps do are not possible, since all its hidden from it

Hard Drive Performance
! We’ve said many times that hard drives are slow
! Data request performance depends on three steps

" Seek - moving the disk arm to the correct cylinder
! Depends on how fast disk arm can move (increasing very

slowly over the years)
" Rotation - waiting for the sector to rotate under the head

! Depends on rotation rate of disk (increasing slowly over the
years)

" Transfer - transferring data from surface into disk
controller electronics, sending it back to the host

! Depends on density (increasing rapidly over the years)

! When accessing the hard drives, the OS and
controller try to minimize the cost of all these steps

Disk Scheduling
! Just like for the CPU, one must schedule disk activities
! The OS receives I/O requests from processes, some for the disk
! These requests consist of

" Input or output
" A disk address
" A memory address
" The number of bytes (in fact sectors) to be transferred

! Given how slow the disk is and how fast processes are, it is
common for the disk to be busy when a new request arrives

! The OS maintains a queue of pending disk requests
" Processes are in the blocked state and placed in the device’s queue

maintained by the kernel
! After a request completes, a new request is chosen from the

queue
! Question: which request should be chosen?

Seek Time
! Nowadays, the average seek time is in orders of

milliseconds
" Swinging the arm back and forth takes time

! This is an eternity from the CPU’s perspective
" 2 GHz CPU
" 5ms seek time
" 10 million cycles!

! A good goal is to minimize seek time
" i.e., minimize arm motion
" i.e., minimize the number of cylinders the head travels over

Credit: Alpha six

First Come First Serve (FCFS)

! FCFS: as usual, the simplest

(cylinder #)

head movement:
640 cylinders

Shortest Seek Time First (SSTF)
! SSTF: Select the request that’s the closest

to the current head position
(cylinder #)

head movement:
236 cylinders

SSTF

! SSTF is basically SJF (Shortest job First),
but for the disk

! Like SJF, it may cause starvation
" If the head is at 80, and if there is a constant

stream of requests for cylinders in [50,100],
then a request for cylinder 200 will never be
served

! Also, it is not optimal in terms of number of
cylinders
" On our example, it is possible to achieve as

low as 208 head movements

SCAN Algorithm
! The head goes all the way up and down, just like an elevator

" It serves requests as it reaches each cylinder

(cylinder #)

head movement:
208 cylinders

SCAN Algorithm
! There can be no starvation with SCAN
! Moving the head from one cylinder to the next takes little time

and is better than swinging back and forth
! One small problem: After reaching one end, assuming

requests are uniformly distributed, when the head reverses
direction it will find very few requests initially

" Because it just served them on the way up
" Not quite like an elevator in this respect

! This leads to non-uniform wait times
" Requests that just missed the head close to one end have to wait a

long time
! Solution: C-SCAN

" When the head reaches one end, it “jumps” to the other end instead
of reversing direction

" Just as if the cylinder were organized in a circular list

C-SCAN

(cylinder #)

head movement:
236 cylinders

Hard Drive Scheduling Recap
! As usual, there is no “best” algorithm

" Highly depends on the workload
! Do we care?

" For home PCs, there aren’t that many I/O requests, so
probably not

" For servers, disk scheduling is crucial
! And SCAN-like algorithms are “it”

! Modern drives implement the disk scheduling themselves
" SCAN, C-SCAN
" Also because the OS can’t do anything about rotation latency,

while the disk controller can
! It’s not all about minimizing seek time

! However, the OS must still be involved
" e.g., not all requests are created equal

Hard Drives Reliability

! Hard drives are not reliable
" MTTF (Mean Time To Failure) is not infinite
" And failures can be catastrophic

! Interesting Google article: labs.google.com/
papers/disk_failures.pdf

! They looked at over 100,000 disks in 2007
and looked at failure statistics

! Let’s look at one of their graphs

Disk Reliability

Hard Drives are Cheap

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

RAID
! Disks are unreliable, slow, and cheap
! Simple idea: let’s use redundancy

" Increases reliability
! If one fails, you have another one (increased perceived MTTF)

" Increases speed
! Aggregate disk bandwidth if data is split across disks

! Redundant Array of Independent Disks
" The OS can implement it with multiple bus-attached disks
" An intelligent RAID controller in hardware
" A “RAID array” as a stand-alone box

RAID Techniques

! Data Mirroring
" Keep the same data on multiple disks

! Every write is to each mirror, which takes time

! Data Striping
" Keep data split across multiple disks to allow

parallel reads
! e.g., read bits of a byte from 8 disks

! Parity Bits
" Keep information from which to reconstruct lost

bits due to a drive failing
! These techniques are combined at will

RAID Levels

! Combinations of the techniques are called
“levels”
" More of a marketing tool, really

! You should know about common RAID
levels
" The book talks about all of them

! but for level 2, which is not used

RAID 0

! Data is striped across multiple disks
" Using a fixed strip size

! Gives the illusion of a larger disk with high
bandwidth when reading/writing a file
" Accessing a single strip is not any faster

! Improves performance, but not reliability
! Useful for high-performance applications

RAID 0 Example

! Fixed strip size
! 5 files of various sizes
! 4 disks

RAID 1

! Mirroring (also called shadowing)
! Write every written byte to 2 disks

" Uses twice as many disks as RAID 0
! Reliability is ensured unless you have

(extremely unlikely) simultaneous failures
! Performance can be boosted by reading

from the disk with the fastest seek time
" The one with the arm the closest to the target

cylinder

RAID 1 Example

! 5 files of various sizes
! 4 disks

RAID 3
! Bit-interleaved parity

" Each write goes to all disks, with each disk storing one bit
" A parity bit is computed, stored, and used for data recovery

! Example with 4 disks an 1 parity disk
" Say you store bits 0 1 1 0 on the 4 disks
" The parity bit stores the XOR of those bits: (((0 xor 1) xor 1) xor 0) =
0

" Say you lose one bit: 0 ? 1 0
" You can XOR the remaining bits with the parity bit to recover the lost

bit: (((0 xor 0) xor 1) xor 0) = 1
" Say you lose a different bit: 0 1 1 ?
" The XOR still works: (((0 xor 1) xor 1) xor 0) = 0

! Bit-level striping increases performance
! XOR overhead for each write (done in hardware)
! Time to recovery is long (a bunch of XOR’s)

RAID 4 and 5
! RAID 4: Basically like RAID 3, but interleaving it with strips

" A (small) read involves only one disk
! RAID 5: Like RAID 4, but parity is spread all over the disks

as opposed to having just one parity disk, as shown below

! RAID 6: like RAID 5, but allows simultaneous
failures (rarely used)

OS Disk Management

! The OS is responsible for
" Formatting the disk
" Booting from disk
" Bad-block recovery

Physical Disk Formatting
! Divides the disk into sectors
! Fills the disk with a special data structure for each

sector
" A header, a data area (512 bytes), and a trailer

! In the header and trailer is the sector number, and
extra bits for error-correcting code (ECC)

" The ECC data is updated by the disk controller on each
write and checked on each read

" If only a few bits of data have been corrupted, the
controller can use the ECC to fix those bits

" Otherwise the sector is now known as “bad”, which is
reported to the OS

! Typically all done at the factory before shipping

Logical Formatting

! The OS first partitions the disk into one or
more groups of cylinders: the partitions

! The OS then treats each partition as a
separate disk

! Then, file system information is written to
the partitions
" See the File System lecture

Boot Blocks

! Remember the boot process from a
previous lecture
" There is a small ROM-stored bootstrap

program
" This program reads and loads a full bootstrap

stored on disk
! The full bootstrap is stored in the boot

blocks at a fixed location on a boot disk/
partition
" The so-called master boot record

! This program then loads the OS

Bad Blocks

! Sometimes, data on the disk is corrupted
and the ECC can’t fix it

! Errors occur due to
" Damage to the platter’s surface
" Defect in the magnetic medium due to wear
" Temporary mechanical error (e.g., head

touching the platter)
" Temporary thermal fluctuation

! The OS gets a notification

Bad Blocks
! Upon reboot, the disk controller can be told to

replace a bad block by a spare: sector sparing
" Each time the OS asks for the bad block, it is given the

spare instead
" The controller maintains an entire block map

! Problem: the OS’s view of disk locality may be very
different from the physical locality

! Solution #1: Spares in each cylinders and a spare
cylinder

" Always try to find spares “close” to the bad block
! Solution #2: Shuffle sectors to bring the spare next to

the bad block
" Called sector splitting

Solid-State Drives (SSDs)
! Purely based on solid-state memory

" Flash-based: persistent but slow - The
common case

" DRAM-based: volatile but fast

SSDs
! No moving parts!
! Flash SSDs competitive vs. hard drives

" faster startups and reads
" silent, low-heat, low-power
" more reliable
" less heavy
" getting larger and cheaper, close to HDD
" lower lifetime due to write wear off

! Used to be a big deal, but now ok especially for personal computers
" slower writes (????)

! SSDs are becoming more and more mainstream
! The death of HDD is not for tomorrow, but looks much

closer than 5 years ago...

SSD Structure

! The flash cell

SSD Structure

! The page (4KB)

SSD Structure

! The block: 128 pages
(512KB)

Why Slow Writes?

! SSD writes are considered slow because
of write amplification: as time goes on, a
write x bytes of data in fact entails writing
y>x bytes of data!!

! Reason:
" The smallest unit that can be read: a 4KB

page
" The smallest unit that can be erased: a 512KB

block
! Let’s look at this on an example

Write Amplification

! Let’s say we have a 6-page block

! Let’s write a 4KB file

Write Amplification

! Let’s write a 8KB file

! Let’s “erase” the first file
! We can’t erase the file without erasing the block, so

we just mark it as invalid

Write Amplification

! Let’s write a 16KB file
! We have to

! load the whole block into RAM (or controller cache)
! Modify the in-memory block
! Write back the whole block

Write Amplification
! To write 4KB + 8KB + 16KB = 28KB of application

data, we had to write 4KB + 8KB + 24KB = 36KB
of data to the SSD

! As the drive fills up and files get written/modified/
deleted, writes end up amplified

! The controller keeps writing on the SSD until full,
before it attempts any rewrite

! In the end, performance is still good relative to
that of an HDD

! The OS can, in the background, clean up block
with invalid pages so that they’re easily writable
when needed

SSDs vs. HDDs

! SSDs have many advantages of HDDs
" Random read latency much smaller
" SSDs are great at parallel read/write
" SSDs are great at small writes
" SSDs are great for random access in general

! Which is typically the bane of HDDs

! Note that not all SSDs are made equal
" Constant innovations/improvements

SSDs are getting cheaper

Conclusion
! HDDs are slow, large, unreliable, and cheap
! Disk scheduling by the OS/controller tries to help

with performance
" i.e., reduce seek time

! Redundancy is a way to cope with slow and
unreliable HDDS

! SSDs provide a radically novel approach that may
very well replace HDDs in the future

" The two are likely to coexist for years to come
! The OS is involved in disk management functions,

but with a lot of help from the drive controllers

