Mass-Storage

ICS332 - Fall 2017
Operating Systems

Henri Casanova (henric@hawaii.edu)

Magnetic Disks

® Magnetic disks (a.k.a. “hard drives”) are (still) the most
common secondary storage devices today

® They are “messy”
Errors, bad blocks, missed seeks, moving parts
® And yet, the data they hold is critical

® The OS used to hide all the “messiness” from higher-level
software

Programs shouldn’t have to know anything about the way
the disk is built

® This has been done increasingly with help from the hardware
l.e., the disk controller

® \What do hard drives look like?

" A
Hard Drive Structure

track t <«— spindle

— arm assembly

sector s

cylinder ¢ — read-write
: head

|
platterC

T

rotation

Hard Drive access Access

® A hard drive requires a lot of information for an access
Platter #, sector #, track #, etc.
m Hard drives today are more complicated than the simple picture

e.g., sectors of different sizes to deal with varying densities and radial
speeds with respect to the distance to the spindle

m Nowadays, hard drives comply with standard interfaces
EIDE, ATA, SATA, USB, Fiber Channel, SCSI
® The hard drives, in these interfaces, is seen as an array of logical
blocks (512 bytes)

® The device, in hardware, does the translation between the block #
and the platter #, sector #, track #, etc.
® This is good:
The kernel code to access the disk is straightforward
The controller can do a lot of work, e.g., transparently hiding bad blocks

® The cost is that some cool optimizations that the kernel could
perhaps do are not possible, since all its hidden from it

Hard Drive Performance

m \We've said many times that hard drives are slow

® Data request performance depends on three steps

Seek - moving the disk arm to the correct cylinder

® Depends on how fast disk arm can move (increasing very
slowly over the years)

Rotation - waiting for the sector to rotate under the head

= Depends on rotation rate of disk (increasing slowly over the
years)

Transfer - transferring data from surface into disk
controller electronics, sending it back to the host

= Depends on density (increasing rapidly over the years)

® \When accessing the hard drives, the OS and
controller try to minimize the cost of all these steps

" J
Disk Scheduling

m Just like for the CPU, one must schedule disk activities
®m The OS receives I/O requests from processes, some for the disk

® These requests consist of

Input or output

A disk address

A memory address

The number of bytes (in fact sectors) to be transferred
m Given how slow the disk is and how fast processes are, it is

common for the disk to be busy when a new request arrives

® The OS maintains a queue of pending disk requests

Processes are in the blocked state and placed in the device’s queue
maintained by the kernel

m After a request completes, a new request is chosen from the
queue

m Question: which request should be chosen?

Seek Time

® Nowadays, the average seek time is in orders of
milliseconds

Swinging the arm back and forth takes time
® This is an eternity from the CPU'’s perspective
2 GHz CPU :
oms seek time
10 million cycles!

Credit: Alpha six

m A good goal is to minimize seek time
l.e., minimize arm motion
i.e., minimize the number of cylinders the head travels over

" J
First Come First Serve (FCFS)

®m FCFS: as usual, the simplest

queue = 98, 183, 37, 122, 14, 124, 65, 67 (cylinder #)
head starts at 53
0 14 37 536567 98 122124 183199
|
|

| | | | | [| }

. -

>o

e head movement:
640 cylinders

" J
Shortest Seek Time First (SSTF)

m SSTF: Select the request that's the closest

to the current head position
queue = 98, 183, 37, 122, 14, 124, 65, 67 (cylinder #)
head starts at 53
? 14 37 536567 98 122124 183199
|

| | 1l | 1 | {

SSTF

B SSTF is basically SJF (Shortest job First),
but for the disk

m ke SJ
If the

-, It may cause starvation

head is at 80, and if there is a constant

stream of requests for cylinders in [50,100],
then a request for cylinder 200 will never be
served

m Also, it

IS not optimal in terms of number of

cylinders

On our example, it is possible to achieve as
low as 208 head movements

" J
SCAN Algorithm

® The head goes all the way up and down, just like an elevator
It serves requests as it reaches each cylinder

queue = 98, 183, 37, 122, 14, 124, 65, 67 (cylinder #)
head starts at 53
37 536567 98 122124 183199

|- | 11 | {

head movement:
208 cylinders

" J
SCAN Algorithm

B There can be no starvation with SCAN

® Moving the head from one cylinder to the next takes little time
and is better than swinging back and forth

® One small problem: After reaching one end, assuming
requests are uniformly distributed, when the head reverses
direction it will find very few requests initially
Because it just served them on the way up
Not quite like an elevator in this respect

® This leads to non-uniform wait times

Requests that just missed the head close to one end have to wait a
long time

®m Solution: C-SCAN

When the head reaches one end, it “jumps” to the other end instead
of reversing direction

Just as if the cylinder were organized in a circular list

"
C-SCAN

queue = 98, 183, 37, 122, 14,124, 65, 67 (cylinder #)
head starts at 53
37 536567 98 122124 183199

| L1l | Ll e

N
3

Hard Drive Scheduling Recap

® As usual, there is no “best” algorithm
Highly depends on the workload

® Do we care?

For home PCs, there aren’t that many I/O requests, so
probably not

For servers, disk scheduling is crucial
= And SCAN-like algorithms are “it”

® Modern drives implement the disk scheduling themselves
SCAN, C-SCAN

Also because the OS can’t do anything about rotation latency,
while the disk controller can
= |t's not all about minimizing seek time

®m However, the OS must still be involved
e.g., not all requests are created equal

Hard Drives Reliability

®m Hard drives are not reliable
MTTF (Mean Time To Failure) is not infinite
And failures can be catastrophic

B Interesting Google article: 1abs.google.com/
papers/disk_failures.pdf

® They looked at over 100,000 disks in 2007
and looked at failure statistics

m | et's look at one of their graphs

" SEE———
Disk Reliability

o
—

Figure 2: Annualized failure rates broken down by age groups

Hard Drives are Cheap

$.12

«1TB

$.10

i

$.06

$.04

$.02

0
2009 2010 2011 2012 2013 2014 2015 2016 2017

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

"
RAID

m Disks are unreliable, slow, and cheap

m Simple idea: let's use redundancy

Increases reliability
= |f one fails, you have another one (increased perceived MTTF)

Increases speed
= Aggregate disk bandwidth if data is split across disks

m Redundant Array of Independent Disks
The OS can implement it with multiple bus-attached disks
An intelligent RAID controller in hardware
A “RAID array” as a stand-alone box

" J——
RAID Techniques

m Data Mirroring
Keep the same data on multiple disks
® Every write is to each mirror, which takes time
m Data Striping

Keep data split across multiple disks to allow
parallel reads

" e.g., read bits of a byte from 8 disks
m Parity Bits

Keep information from which to reconstruct lost
bits due to a drive failing

®m These techniques are combined at will

" A
RAID Levels

® Combinations of the techniques are called
“levels”

More of a marketing tool, really

® You should know about common RAID
levels

The book talks about all of them

m but for level 2, which is not used

"
RAID O

m Data is striped across multiple disks
Using a fixed strip size

m Gives the illusion of a larger disk with high
bandwidth when reading/writing a file

Accessing a single strip is not any faster
B |[mproves performance, but not reliability
m Useful for high-performance applications

" J———
RAID 0 Example

m Fixed strip size
m 5 files of various sizes
m 4 disks

"
RAID 1

® Mirroring (also called shadowing)

m \Write every written byte to 2 disks
Uses twice as many disks as RAID O

m Reliability is ensured unless you have

(extremely unlikely) simultaneous failures

® Performance can be boosted by reading
from the disk with the fastest seek time

The one with the arm the closest to the target
cylinder

" J———
RAID 1 Example

m 5 files of various sizes
m 4 disks

"
RAID 3

m Bit-interleaved parity
Each write goes to all disks, with each disk storing one bit
A parity bit is computed, stored, and used for data recovery

m Example with 4 disks an 1 parity disk

Say you store bits 0 1 1 0 on the 4 disks

The parity bit stores the XOR of those bits: (((O xor 1) xor 1) xor 0) =
0

Say you lose one bit: 0?10

You can XOR the remaining bits with the parity bit to recover the lost
bit: (((0 xor 0) xor 1) xor 0) =1

Say you lose a different bit: 01 1 ?
The XOR still works: (((0 xor 1) xor 1) xor 0) =0

m Bit-level striping increases performance
m XOR overhead for each write (done in hardware)
® Time to recovery is long (a bunch of XOR’s)

"
RAID 4 and 5

m RAID 4: Basically like RAID 3, but interleaving it with strips
A (small) read involves only one disk

m RAID 5: Like RAID 4, but parity is spread all over the disks
as opposed to having just one parity disk, as shown below

SEE5

B RAID 6: like RAID 5, but allows simultaneous
failures (rarely used)

OS Disk Management

® The OS is responsible for
Formatting the disk
Booting from disk
Bad-block recovery

Physical Disk Formatting

m Divides the disk into sectors
m Fills the disk with a special data structure for each
sector
A header, a data area (512 bytes), and a trailer
m |n the header and trailer is the sector number, and
extra bits for error-correcting code (ECC)

The ECC data is updated by the disk controller on each
write and checked on each read

If only a few bits of data have been corrupted, the
controller can use the ECC to fix those bits

Otherwise the sector is now known as “bad”, which is
reported to the OS

m Typically all done at the factory before shipping

Logical Formatting

® The OS first partitions the disk into one or
more groups of cylinders: the partitions

® The OS then treats each partition as a
separate disk

® Then, file system information is written to
the partitions

See the File System lecture

"
Boot Blocks

B Remember the boot process from a
previous lecture

There is a small ROM-stored bootstrap
program

This program reads and loads a full bootstrap
stored on disk

® The full bootstrap is stored in the boot
blocks at a fixed location on a boot disk/
partition
The so-called master boot record
® This program then loads the OS

" A
Bad Blocks

B Sometimes, data on the disk is corrupted
and the ECC can't fix it

® Errors occur due to
Damage to the platter’'s surface
Defect in the magnetic medium due to wear

Temporary mechanical error (e.g., head
touching the platter)

Temporary thermal fluctuation
® The OS gets a notification

"
Bad Blocks

®m Upon reboot, the disk controller can be told to
replace a bad block by a spare: sector sparing

Each time the OS asks for the bad block, it is given the
spare instead

The controller maintains an entire block map

® Problem: the OS’s view of disk locality may be very
different from the physical locality

m Solution #1: Spares in each cylinders and a spare
cylinder
Always try to find spares “close” to the bad block

m Solution #2: Shuffle sectors to bring the spare next to
the bad block

Called sector splitting

" S
Solid-State Drives (SSDs)

m Purely based on solid-state memory

Flash-based: persistent but slow - The
common case

DRAM-based: volatile but fast

" B
SSDs

® No moving parts!

® Flash SSDs competitive vs. hard drives
faster startups and reads
silent, low-heat, low-power
more reliable
less heavy
getting larger and cheaper, close to HDD
lower lifetime due to write wear off

m Used to be a big deal, but now ok especially for personal computers
slower writes (??777?)

m SSDs are becoming more and more mainstream

B The death of HDD is not for tomorrow, but looks much
closer than 5 years ago...

" A
SSD Structure

m The flash cell

/]) .
Oxide Sidewall
e

Inter Poly

Tunnel - Dielectric ONO
Oxide

.

NLAEITT]
P-Type Silicon

Substrate

SSD Structure

® The page (4KB)

SSD Structure

7p)
0
)
©
Q
00
N
=
Iy
O
O
O
O
i
T
[]

" J
Why Slow Writes?

B SSD writes are considered slow because
of write amplification: as time goes on, a
write x bytes of data in fact entails writing
y>Xx bytes of data!!

m Reason:
The smallest unit that can be read: a 4KB
page
The smallest unit that can be erased: a 512KB
block

m | et’'s look at this on an example

Write Amplification

m | et's say we have a 6-page block

m | et's write a 4KB file

; %
5 o
i ¥, - \
i (EXE
f 1)
9

Write Amplification

m | et's write a 8KB file

m | et’'s “erase” the first file

® \We can't erase the file without erasing the block, so
we just mark it as invalid

Write Amplification

49A00H *d UYor ©

19A0OH *d UYor

m [et's write a 16KB file

® \We have to
® |[oad the whole block into RAM (or controller cache)

® Modify the in-memory block
® \Write back the whole block

49A00H *d uyor ©

49A00H *d uyor
49A00H *d uyor ¢
49A00H *d uyor ©

Write Amplification

m To write 4KB + 8KB + 16KB = 28KB of application
data, we had to write 4KB + 8KB + 24KB = 36KB
of data to the SSD

m As the drive fills up and files get written/modified/
deleted, writes end up amplified

® The controller keeps writing on the SSD until full,
before it attempts any rewrite

® [n the end, performance is still good relative to
that of an HDD

® The OS can, in the background, clean up block
with invalid pages so that they're easily writable
when needed

" A
SSDs vs. HDDs

® SSDs have many advantages of HDDs
Random read latency much smaller
SSDs are great at parallel read/write
SSDs are great at small writes

SSDs are great for random access in general
= Which is typically the bane of HDDs

® Note that not all SSDs are made equal
Constant innovations/improvements

" JEE
SSDs are getting cheaper

Total SSD $/TB Premium vs.HDDs
(Mission-Critical & Nearline Enterpise, PC, Total SSDs)

Mission Critical Enterprise
u Nearline Enterpnse
#PCs

nTotal SSDs

34

dld

2016 2017E 2018E 2019E 2020E

Conclusion

m HDDs are slow, large, unreliable, and cheap
® Disk scheduling by the OS/controller tries to help
with performance
l.e., reduce seek time

® Redundancy is a way to cope with slow and
unreliable HDDS

®m SSDs provide a radically novel approach that may
very well replace HDDs in the future

The two are likely to coexist for years to come

® The OS is involved in disk management functions,
but with a lot of help from the drive controllers

