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Paging is great but...

The previous set of lecture notes ends with all the benefits of paging

But there are some challenges / problems

Two big problems:

Problem #1: Paging has extra overhead

Problem #2: Page tables can be very large

Let’s understand these problems and come up with solutions
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Paging is great, but it’s expensive :(

Each address coming out of the CPU is virtual

Address translation (from virtual to physical) has to be performed for EVERY
address issued by the CPU

Assume that the page size is 4 KiB

Assume that the address space is 8 MiB

Then the page table needs to hold 223/212 = 211 = 2048 entries

The page table is in RAM, and it will be accessed very frequently

When a new process is dispatched to the CPU, the dispatcher loads a special
register with the address of the beginning of the process’s page table: the Page
Table Base Register (PTBR)

This makes it fast to switch between page tables at each context switch

This does not speed up translation though

In fact, the memory access time is doubled: 1) Access an entry in the page
table; 2) Based on that entry access the physical address

We just made our RAM twice as slow :(
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Locality and Caching

However!

Temporal locality: repeated access to the same memory location

e.g., counter += f(1, alpha, beta)

⇒ counter is accessed over and over
⇒ the same frame is accessed over and over

Spatial locality: repeated access to nearby memory locations
e.g., a[i] = a[i-1] + a[i-2]

⇒ all three array elements are very likely in the same frame
⇒ the same frame is accessed over and over

Therefore, as a process executes, the address translation request
look like:

Give me Frame Number of Page 12
Give me Frame Number of Page 12 again
Give me Frame Number of Page 12 again
and again, and again...

We should REMEMBER (i.e., cache) previous translation results!!
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The TLB

Caching of previous translations is done by a hardware component called...

The Translation Lookaside Buffer (TLB)

Each entry in the TLB is a <key, value> pair
You give it a key
The key is compared in parallel with all stored keys
If the key is found, then the associated value is returned

(Image Source: Wikipedia
—Translation lookaside
buffer. 2016-11-19)
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TLB Performance

Typical TLB characteristics:

Contains 12 to 4,096 entries
Performance:

On hit: less than 1 clock cycle
On miss: 10-100 clock cycles

Miss rate: 0.01 - 1%

A Replacement Policy must be defined when the TLB is full:

Least Recently Used (LRU)? Random?

Some TLBs allow for some entries to be un-evictable

e.g., kernel pages
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Experiment: How useful is the TLB

tlb stress.c: a piece of code that allocates an array spanning multiple
pages and then writes values at random locations (runs for some 20
seconds each time)

Results on my Linux box

Table 1

2 50.267

4 50.800

8 51.055

16 51.567

32 51.626

64 51.403

128 51.003

256 49.137

512 46.708

1024 45.137

2048 37.510

4096 20.393

9192 16.185

16384 15.049

32768 14.441

65536 14.137

131072 13.935
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The TLB and Context-Switches

What happens with the TLB on a context-switch?

Wipe the TLB?

VPN 7 of process A is not the same in the same frame as VPN of
process B
Called a “TLB flush”
But perhaps unnecessary aggressive (the two processes could happily
share the TLB)
So your machine doesn’t do a flush

ASIDs: Address-Space IDentifiers

Each TLB entry is annotated with a process identifier
The TLB can contain entries associated to multiple processes (kernel
code, shared libraries, multi-threaded program, ...)
Each lookup attempts to match entry ASIDs with the ASID of the
current process (and if mismatch then it’s a TLB miss)
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One down, one to go...

Problem #1: Paging has extra overhead

Solution: Use a TLB

Only works because our programs have locality “naturally”
which is why caches work, and the TLB is a kind of cache

Problem #2: Page tables can be very large

Let’s look at this one now...

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



One down, one to go...

Problem #1: Paging has extra overhead

Solution: Use a TLB

Only works because our programs have locality “naturally”
which is why caches work, and the TLB is a kind of cache

Problem #2: Page tables can be very large

Let’s look at this one now...

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Structure

I’ve shown page tables like this:

Page Table
P0 14 X
P1 13 X
P2 18 X
P3 20 X
P4 xx -
P5 xx -
P6 xx -
P7 xx -

But, once again, this is not quite right!
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Page Table Entries

One thing we haven’t talked about yet: how many bits are needed
for a page table entry?

I’ve shown the page table as just a table with numbers in it (and the
valid bit)
But the page table consumes space in RAM

Let us consider a system with 32-bit physical addresses, i.e., a 4GiB
RAM

The n-th entry in the page table is:
The physical frame number
A few bits (for now we’ve seen the valid bit, ASID bits, but there are
other things)

Let us assume a page/frame size of 4 KiB = 212 bytes

We have 232/212 = 220 frames in RAM

So the frame number can be encoded on 20 bits

So a page table entry is 20 bits for the frame number, and then
extra bits for “other stuff”

Let’s say that 32 bits = 4 bytes are used (which is typical for a
32-bit architecture)
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Page Table Entries

On a picture:
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A Note on Page Table Structure

The page table is just an array of entries

The entry for page 0 is the first element of the array
The entry for page 1 is the second element of the array
The entry for page i is the i-th element of the array

So when we say “lookup an entry” we don’t mean a search

Looking up the entry for page i means: PTBR + i × entry size

For instance:

The PTBR contains address 0xAAAA0000
The page table entry size is 4-bytes
I want to “lookup” the entry for page 10
The entry for that page is at address 0xAAAA0028

(i.e., PTBR + 4 × 10)

We get the 4 bytes at that address
These bytes are: the frame number, the valid bit, other useful bits
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So when we say “lookup an entry” we don’t mean a search

Looking up the entry for page i means: PTBR + i × entry size

For instance:

The PTBR contains address 0xAAAA0000
The page table entry size is 4-bytes
I want to “lookup” the entry for page 10
The entry for that page is at address 0xAAAA0028

(i.e., PTBR + 4 × 10)

We get the 4 bytes at that address
These bytes are: the frame number, the valid bit, other useful bits
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Page Table Size

So we have page table entries that are each 4 bytes

Let’s consider a process with a 4GiB address space (i.e., uses all
available physical RAM)

This process has 232/212 = 220 pages

Because the page size is 212 bytes

The process’ page table thus has 220 entries

Therefore, the page table takes up 220 × 22 = 222 bytes

which is 4 MiB

So we need 4 MiB of contiguous RAM space to store the page table

Let me repeat...

We need 4 MiB of contiguous RAM space!!!!
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Page Table Size

We need 4 MiB of contiguous RAM space!!!!

We use paging to avoid large contiguous slabs of RAM

To implement paging we use page tables

But page tables are large contiguous slabs of RAM

To avoid big slabs of RAM we need big slabs of RAM
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Splitting the Page Table into Pages!!

What do we do when we have big slabs or RAM?

We split them into pages!

So the (large) page table is stored in multiple, possible
non-contiguous pages

The main questions: how many page table entries can fit in a page?

In out example, a page is 4KiB and an entry is 4 bytes

So a page can contain 210 (1,024) entries

In the previous slide we said that our page table needs to have 220

entries

Therefore, we need 220/210 = 210 pages of page table entries

That’s right: “page table pages”

Let’s see this on a picture...
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Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entriesEach entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entriesEach entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entries

Each entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entries

Each entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entriesEach entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entriesEach entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Page Table Pages

4KiB
4KiB

...

4KiB

entry

entry

entry

One page with 210 entries

210 pages of
the process’ address space

4KiB
4KiB

...

4KiB

entry

entry

entry

210 pages of entries, for a total

of 210 × 210 = 220 pages

of pages of the process’ address space

entry

entry

entry

One page with 210 entriesEach entry points to

a page table page

PTBR

“Outer page table”

“Inner page table”

Question: How to we find a page

based on an address?

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



Hierarchical Page Tables

The picture on the previous slide is a hierarchical page table

Given a 32-bit virtual address we split it as follows:

10-bit index into
outer page table

10-bit index into
inner page table page

12-bit offset

The first 10 address bits: to pick one of the 210 entries in the outer
page table should we use to find an inner page table page

The next 10 address bits: to pick one the the 210 entries in the inner
page table page should we use to find an address space page

The next 12 address the offset in that page

This working perfectly, luckily, because a page contained 210 entries
and 212 bytes
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Hierarchical Page Tables: Address Translation

p1 p2 offset

(Note: [@] means ”Contents at address @”)

Address of the the outer page table: PTBR

Address of the relevant outer page table entry: PTBR + 4 × p1

Address of the relevant page table page: [PTBR + 4 × p1]

Address of the relevant entry therein: [PTBR + 4 × p1] + 4 × p2

Address of the page: [[PTBR + 4 × p1] + 4 × p2]

Physical address: [[PTBR + 4 × p1] + 4 × p2] + offset

(See OSC figure 8.17)
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In-class Exercise

Page size: 32 KiB

Logical addresses: 39 bits

Page table entry size: 8 bytes

Using 2-level paging, how is a logical address split into 3 outer page,
inner page, and offset (denoted p1, p2, offset)?

Questions to ask oneself:

How many bits for the offset?
How many page table entries can fit in a page? (gives us p2)
Then compute p1 as 39 - p1 - offset

Henri Casanova (henric@hawaii.edu) Virtual Memory — Paging II



In-class Exercise (Solution)

Page size: 32 KiB

Logical addresses: 39 bits

Page table entry size: 8 bytes (= 64 bits)

Using 2-level paging, how is a logical address split into 3 outer page,
inner page, and offset (denoted p1, p2, offset)?

There are 25 × 210 = 215 bytes in a page, offset = 15

We can have up to 239−15 = 224 pages in the address space

We have 215/23 = 212 page table entries in a page

Therefore an inner page table page points to 212 pages: p2 = 12

Therefore, p1 = 39 - p2 - offset = 39 - 12 - 15 = 12

This is yet another “lucky” case in which everything fits perfectly

(because the inner page table has exactly 212 entries)
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Another In-class Exercise

Page size: 64 KiB

Logical addresses: 41 bits

Page table entry size: 4 bytes

Using 2-level paging, how is a logical address split into 3 outer page,
inner page, and offset (denoted p1, p2, offset)?

What fraction of the outer page table is utilized?
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Another In-class Exercise (Solution)

Page size: 64 KiB

Logical addresses: 41 bits

Page table entry size: 4 bytes (= 64 bits)

offset = 16 bits (because 216 bytes in a page)

An inner page table page points to 216/22 = 214 pages

Therefore, p2 = 14

And p1 = 41 - 14 - 16 = 11

The outer page table page thus needs to hold 211 entries

But it could hold up to 214 entries

Therefore, only 211/214 = 1/8 = 12.5% of it are used!
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Hierarchical Page Tables are it then?

For 64-bit addresses, with 2-level paging, we are still in trouble though...

4 KiB page size

Assume 64-bit virtual addresses

One outer page can address 212/8 = 212/23 = 29 inner pages

Therefore: 64 - 12 - 9 = 43 bits to address all outer pages

The total of outer page size must be: 243 ∗ 8 = 64 ∗ 240 = 64 TiB!

So we need an extra level: 33 (second outer page) + 10 + 10 + 12

But the second outer page is still 233 ∗ 8 = 64 GiB and we now have
three indirections

Conclusion: Hierarchical page tables become memory hogs for large
address spaces with small pages

In practice: Virtual addresses are not 64-bit (/proc/cpuinfo) but
more like 48-bit

In practice: 4 levels are used
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Hashed Page Tables

A completely different idea:

Pick a maximum (desirable) size for the page table (say N)

Create a hash function that associates any VPN to an integer of
0..N-1

Structure the page table as a hash table using the hash function
(each entry in 0..N-1 is a list of PFN)

This is interesting but not really done in practice
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Inverted Page Tables

Yet another idea:

One table for all processes

One entry per physical memory frame

Each entry is: ASID + logical page number

CPU issues addresses like: PID + VPN + offset

And page table contains entries like (PID, p) to PFN

Searching for (PID, p) is expensive

And need for a mechanism to implement shared memory

Was used in: PowerPC, UltraSPARC, IA-64 (Itanium) –
Discontinued
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Conclusion

Paging is a good idea, but it has its problems

Problem #1: Address translation is slow

Solution: Use a TLB

Problem #2: The Page Table shouldn’t be contiguous

Solution: Use a hierarchical structure
The hierarchical structure makes translation slower, but we don’t
case because we have a TLB anyway!

We still have one big question: What happens when a process needs
a new page, and there is no free frame???

We can now do all of Homework #7...
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