
  

ICS 351: Today's plan

IPv6 routing protocols (summary)

HTML

HTTP

web scripting languages

certificates (review)

cookies



  

IPv6 routing

● almost the same routing protocols as for IPv4:
● RIPng, OSPFv6, BGP with multiprotocol extensions

● more bits for the netmask, so more opportunities 
for subnetting

● plenty of (re)configuration!
● but most of it automated



  

HTML

● HyperText Markup Language

● an in-line way of marking (hyper)text, similar in spirit to TeX/LaTeX, and 
inspiring the creation of XML

● part of the markings are about style and formatting: font, size, bold/italic, 
bullet lists, etc.

● some markings lead you to other pages or objects, e.g.

      <a href="http://www2.hawaii.edu/~esb/">home page</a>, or

      <img src="http://www2.hawaii.edu/~esb/pix/2009sils.jpg">

objects are identified by URLs (all URLs are also URIs)

● each URL has a protocol (scheme name, e.g. http), a host identifier (DNS 
name or IP address), an optional port number (:80 if not specified), and the 
path given to the server 



  

typical HTTP interaction

● client is given a URL, splits it into domain name (port) and path

● client resolves domain name to IP address

● client opens a connection to the IP address (port 80, or the given port), 
server accepts connection (TCP 3-way handshake)

● client sends HTTP request

● server sends HTTP response

● after parsing response and finding embedded images or other content, client 
sends new HTTP requests on same TCP connection

● server replies to each request in sequence

● client matches each response to its request, renders the page

● after a time (typically 30s), the server closes the connection 



  

HTTP request header

● all HTTP is rendered using ASCII. This makes it easy 
to read, a little harder to parse

● for example, an HTTP request might look like this:

      GET /~esb/ HTTP/1.1

      Host: www2.ics.hawaii.edu

      Accept: */*

      Connection: close



  

HTTP response header

● a corresponding HTTP reply might look like this:

      HTTP/1.1 200 OK

      Date: Thu, 19 Nov 2009 05:18:56 GMT

      Server: Apache

      Last-Modified: Wed, 02 Sep 2009 03:17:30 GMT

      ETag: "19abf-2095-4728fb5090680"

      Accept-Ranges: bytes

      Content-Length: 8341

      Connection: close

      Content-Type: text/html

      <html>...



  

HTTP headers

● in each case, the first line describes the main request or result:

– in the request, the method can be GET, HEAD, POST, 
or a few others,

– the path is specified immediately after the request,

– the protocol version follows the path

– in the reply, the version comes first, followed by the 
result code, both as a number and as a string 

● the remaining lines of the header give more details, sometimes 
essential details (e.g. the content type and content length)

● each header ends with an empty line



  

HTTP/2

● headers are not ASCII, and support compression of header 
information

● server can push data that was not requested, for example 
images the server knows will be needed to render a web page

● content for several requests can be interleaved on a single TCP 
connection

– slow content that the server begins to send early need 
not block later fast content



  

web scripting languages

● web content described by HTML was originally static, 
corresponding to files on the server

● since the server is a program, it can generate content 
dynamically, e.g. put the user's name (or bank balance) within 
the web page

● however, this would require modifying the code of the server

– which is error-prone and hard to do
● so instead, the server program can execute a server-side script 

to generate new content to be served

● this script can be written in any language supported by the 
system on which the server is running



  

client-side scripts

● even with a server-side script, each change in the web 
page requires an HTTP request and reply, and 
requires that the page be rendered again

– HTTP requests and replies can be slow
● usually also requires a mouse click

● to have more interactivity, many browsers have been 
designed to execute client-side scripts that can modify 
the displayed page

– they may fetch data from the server
● client-side scripts are in Java or (now) Javascript



  

client-side scripts and security

● while client-side scripts do much to improve the 
appearance of pages, there can be concerns 
about security and reliability

● client-side scripts let servers execute code on a 
client – how does the client know what the code 
will do?  can the client trust the server?

● in an attempt to address these concerns, 
browsers limit what scripts are allowed to do

● not all browsers execute client-side scripts



  

server-side scripts and security

● bugs in a server-side script can be exploited by 
attackers

● server-side scripts that do not thoroughly check 
their input are vulnerable, e.g. to SQL injection 
attacks

http://xkcd.com/327/

● a server-side script lets the client execute code 
on the server

● the server controls what scripts are available, 
but not what the clients will do with the scripts
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secure HTTP

● HTTP by itself is very insecure: any man-in-the-
middle attacker can observe all the content sent 
and received

● some people wish to use HTTP to send 
sensitive data, e.g. credit card numbers, 
personal email

● instead of layering HTTP over TCP, HTTP can 
be layered over a secure protocol that runs 
over TCP

● the choice of secure protocols for HTTPS 
(secure HTTP) is SSL (older) or TLS (newer)

● both SSL and TLS are considered secure, but
● SSL and TLS authentication requires a public 

key for the server
● how to connect to a server that has not been 

visited before? 
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certificates

● a certificate is a digital signature by entity CA 
verifying that the enclosed public key 
authenticates server S

● there are a few (~100) certificate authorities 
(CAs) that are widely known and recognized by 
many web browsers

● when presenting its public key, a server S also 
presents the certificate signed by a CA as 
evidence that S indeed is the server the user 
wants to talk with
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certificate vulnerabilities

● certificates protect against man-in-the-middle 
attack (including DNS attacks), but are still 
vulnerable to misspellings (e.g. goggle.com)

● if the certificate authority is compromised, and 
DNS or the routing infrastructure subverted, an 
attacker can impersonate any website

● this may have happened – the dutch CA 
diginotar may have had its keys stolen and 
misused
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self-signed certificates

● if I have a website for private use, I don’t need 
a certificate from a CA

● I can use a self-signed certificate instead
● as before, the crucial step is giving the browser 

the correct public key for the desired server
● this requires hand-configuration of all the 

browsers that will use this server
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HTTP cookies

● HTTP is a stateless protocol: a server has no 
real way to identify a client, so a request may or 
may not be connected with prior requests

● instead, a server may offer a client a cookie, a 
small amount of data that is only meaningful to 
the server

● on subsequent related requests to the same 
server, the client will send back the cookie, to 
confirm that the requests are connected

● cookies have an expiration time -- most cookies 
used for authentication expire quickly
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HTTP cookies

● cookies can also be used to attempt to track users as they visit multiple sites, by 
embedding in the several sites a small image (or other content) served from the 
same server

● these cookies are often long-lived
● similar tracking can be done by tracking accesses based on the IP number of the 

connecting client
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Cookie Persistence

HTTP/1.1 200 OK
Date: Sun, 06 Apr 2014 01:22:44 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: 
PREF=ID=ef4f230aa811ea46:FF=0:TM=1396747364:LM=1396747364:S=MKk0H_sL
4n4ASDWT; expires=Tue, 05-Apr-2016 01:22:44 GMT; path=/; 
domain=.google.com
Set-Cookie: NID=67=JDP6w2jg7bqqHpOm0D6MNfqUwjiuH7YDQ_oGL3J-xt93-
BLfL4xjxVBEN-aTJ
NwX4nx6cRd9oVyTlHrPBi1XyZmEaWh3VHW3clsVNEIBjT2RA1h8mdWYQxcQr10-Nqnz; 
expires=Mon
, 06-Oct-2014 01:22:44 GMT; path=/; domain=.google.com; HttpOnly
P3P: CP="This is not a P3P policy! See 
http://www.google.com/support/accounts/bi
n/answer.py?hl=en&answer=151657 for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Connection: close
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DNS reminder

● DNS provides name to IP address resolution
● Domain names are grouped into zones
● a DNS server provides translation (resolution) 

for the names in one zone
● a DNS query contains question Resource 

Records
● a DNS response may contain answer RRs, 

name server RRs, and additional RRs
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dig hawaii.edu

;; QUESTION SECTION:

;hawaii.edu. IN A

;; ANSWER SECTION:

hawaii.edu. 1800IN A 128.171.224.100

;; AUTHORITY SECTION:

hawaii.edu. 1800IN NS dns4.hawaii.edu.

hawaii.edu. 1800IN NS dns2.hawaii.edu.

hawaii.edu. 1800IN NS dns1.hawaii.edu.

;; ADDITIONAL SECTION:

dns1.hawaii.edu. 1800IN A 128.171.3.13

dns1.hawaii.edu. 1800IN A 128.171.1.1

dns2.hawaii.edu. 1800IN A 128.171.3.13

dns2.hawaii.edu. 1800IN A 128.171.1.1

dns4.hawaii.edu. 1800IN A 130.253.102.4
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dig mx hawaii.edu

;; QUESTION SECTION:

;hawaii.edu. INMX

;; ANSWER SECTION:

hawaii.edu. 1800INMX 10 mx1.hawaii.edu.

;; AUTHORITY SECTION:

hawaii.edu. 1800INNS dns1.hawaii.edu.

hawaii.edu. 1800INNS dns4.hawaii.edu.

hawaii.edu. 1800INNS dns2.hawaii.edu.
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system administration

● suppose a system administrator has to manage a large number 
of machines

● for example, three web servers, a DHCP server, a backup 
server, a Network Attached Storage (NAS) server, a mail server, 
and a few printers

● a large KVM might be useful, but also has limitations:

– all the servers must be in close physical proximity

– there cannot be multiple, remote consoles

– there is no way to get alerts from systems that need 
attention
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Simple Network Management 
Protocol

● SNMP uses the network to report status 
information and alerts about remote systems

● SNMP messages are carried over UDP
● values can be loaded on demand (pull model), 

but when needed and configured appropriately, 
alerts are sent independently by the systems 
being managed (push)
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SNMP
Management Information Base

● SNMP needs a machine-independent way to 
indicate which item of information is being 
requested or sent

● logically, the entire universe of information that 
can be accessed is built into a large tree: the 
Management Information Base or MIB

● the tree is extensible so individuals and 
organization can add their own subtrees -- 
private MIBs

● the tree is universal and known to all
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navigating the MIB

● the path through the tree is sufficient to indicate 
one specific item (corresponding to a variable in 
a programming language)

● the path through the tree can be indicated by a 
sequence of numbers, the number of left 
siblings of the path being taken

● for example, 0.2.7.5.14.1.7.0 is such an Object 
Identifier (OID)

● OIDs are useful for enumerating arrays of 
objects, e.g., network interfaces, routing table 
entries
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SNMP programs

● a network management station is used by the 
system administrator to monitor multiple 
systems

● a management agent must run on every 
managed device, get the required information, 
and provide it on request
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SNMP basic operation

● the network management station may send 
GET requests to get one or more objects from 
specifc agents

● the network management station may also 
send SET requests to modify one or more 
objects on specifc agents

● agents will send TRAP or INFORM alerts to 
network management stations that they have 
been configured to alert

● because it uses UDP, SNMP (like DNS) cannot 
assume that its operations will be successful. 
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