

ICS 351: Today's plan

IPv6 routing protocols (summary)

HTML

HTTP

web scripting languages

certificates (review)

cookies

IPv6 routing

● almost the same routing protocols as for IPv4:
● RIPng, OSPFv6, BGP with multiprotocol extensions

● more bits for the netmask, so more opportunities
for subnetting

● plenty of (re)configuration!
● but most of it automated

HTML

● HyperText Markup Language

● an in-line way of marking (hyper)text, similar in spirit to TeX/LaTeX, and
inspiring the creation of XML

● part of the markings are about style and formatting: font, size, bold/italic,
bullet lists, etc.

● some markings lead you to other pages or objects, e.g.

 home page, or

objects are identified by URLs (all URLs are also URIs)

● each URL has a protocol (scheme name, e.g. http), a host identifier (DNS
name or IP address), an optional port number (:80 if not specified), and the
path given to the server

typical HTTP interaction

● client is given a URL, splits it into domain name (port) and path

● client resolves domain name to IP address

● client opens a connection to the IP address (port 80, or the given port),
server accepts connection (TCP 3-way handshake)

● client sends HTTP request

● server sends HTTP response

● after parsing response and finding embedded images or other content, client
sends new HTTP requests on same TCP connection

● server replies to each request in sequence

● client matches each response to its request, renders the page

● after a time (typically 30s), the server closes the connection

HTTP request header

● all HTTP is rendered using ASCII. This makes it easy
to read, a little harder to parse

● for example, an HTTP request might look like this:

 GET /~esb/ HTTP/1.1

 Host: www2.ics.hawaii.edu

 Accept: */*

 Connection: close

HTTP response header

● a corresponding HTTP reply might look like this:

 HTTP/1.1 200 OK

 Date: Thu, 19 Nov 2009 05:18:56 GMT

 Server: Apache

 Last-Modified: Wed, 02 Sep 2009 03:17:30 GMT

 ETag: "19abf-2095-4728fb5090680"

 Accept-Ranges: bytes

 Content-Length: 8341

 Connection: close

 Content-Type: text/html

 <html>...

HTTP headers

● in each case, the first line describes the main request or result:

– in the request, the method can be GET, HEAD, POST,
or a few others,

– the path is specified immediately after the request,

– the protocol version follows the path

– in the reply, the version comes first, followed by the
result code, both as a number and as a string

● the remaining lines of the header give more details, sometimes
essential details (e.g. the content type and content length)

● each header ends with an empty line

HTTP/2

● headers are not ASCII, and support compression of header
information

● server can push data that was not requested, for example
images the server knows will be needed to render a web page

● content for several requests can be interleaved on a single TCP
connection

– slow content that the server begins to send early need
not block later fast content

web scripting languages

● web content described by HTML was originally static,
corresponding to files on the server

● since the server is a program, it can generate content
dynamically, e.g. put the user's name (or bank balance) within
the web page

● however, this would require modifying the code of the server

– which is error-prone and hard to do
● so instead, the server program can execute a server-side script

to generate new content to be served

● this script can be written in any language supported by the
system on which the server is running

client-side scripts

● even with a server-side script, each change in the web
page requires an HTTP request and reply, and
requires that the page be rendered again

– HTTP requests and replies can be slow
● usually also requires a mouse click

● to have more interactivity, many browsers have been
designed to execute client-side scripts that can modify
the displayed page

– they may fetch data from the server
● client-side scripts are in Java or (now) Javascript

client-side scripts and security

● while client-side scripts do much to improve the
appearance of pages, there can be concerns
about security and reliability

● client-side scripts let servers execute code on a
client – how does the client know what the code
will do? can the client trust the server?

● in an attempt to address these concerns,
browsers limit what scripts are allowed to do

● not all browsers execute client-side scripts

server-side scripts and security

● bugs in a server-side script can be exploited by
attackers

● server-side scripts that do not thoroughly check
their input are vulnerable, e.g. to SQL injection
attacks

http://xkcd.com/327/

● a server-side script lets the client execute code
on the server

● the server controls what scripts are available,
but not what the clients will do with the scripts

13

secure HTTP

● HTTP by itself is very insecure: any man-in-the-
middle attacker can observe all the content sent
and received

● some people wish to use HTTP to send
sensitive data, e.g. credit card numbers,
personal email

● instead of layering HTTP over TCP, HTTP can
be layered over a secure protocol that runs
over TCP

● the choice of secure protocols for HTTPS
(secure HTTP) is SSL (older) or TLS (newer)

● both SSL and TLS are considered secure, but
● SSL and TLS authentication requires a public

key for the server
● how to connect to a server that has not been

visited before?

14

certificates

● a certificate is a digital signature by entity CA
verifying that the enclosed public key
authenticates server S

● there are a few (~100) certificate authorities
(CAs) that are widely known and recognized by
many web browsers

● when presenting its public key, a server S also
presents the certificate signed by a CA as
evidence that S indeed is the server the user
wants to talk with

15

certificate vulnerabilities

● certificates protect against man-in-the-middle
attack (including DNS attacks), but are still
vulnerable to misspellings (e.g. goggle.com)

● if the certificate authority is compromised, and
DNS or the routing infrastructure subverted, an
attacker can impersonate any website

● this may have happened – the dutch CA
diginotar may have had its keys stolen and
misused

16

self-signed certificates

● if I have a website for private use, I don’t need
a certificate from a CA

● I can use a self-signed certificate instead
● as before, the crucial step is giving the browser

the correct public key for the desired server
● this requires hand-configuration of all the

browsers that will use this server

17

HTTP cookies

● HTTP is a stateless protocol: a server has no
real way to identify a client, so a request may or
may not be connected with prior requests

● instead, a server may offer a client a cookie, a
small amount of data that is only meaningful to
the server

● on subsequent related requests to the same
server, the client will send back the cookie, to
confirm that the requests are connected

● cookies have an expiration time -- most cookies
used for authentication expire quickly

18

HTTP cookies

● cookies can also be used to attempt to track users as they visit multiple sites, by
embedding in the several sites a small image (or other content) served from the
same server

● these cookies are often long-lived
● similar tracking can be done by tracking accesses based on the IP number of the

connecting client

19

Cookie Persistence

HTTP/1.1 200 OK
Date: Sun, 06 Apr 2014 01:22:44 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie:
PREF=ID=ef4f230aa811ea46:FF=0:TM=1396747364:LM=1396747364:S=MKk0H_sL
4n4ASDWT; expires=Tue, 05-Apr-2016 01:22:44 GMT; path=/;
domain=.google.com
Set-Cookie: NID=67=JDP6w2jg7bqqHpOm0D6MNfqUwjiuH7YDQ_oGL3J-xt93-
BLfL4xjxVBEN-aTJ
NwX4nx6cRd9oVyTlHrPBi1XyZmEaWh3VHW3clsVNEIBjT2RA1h8mdWYQxcQr10-Nqnz;
expires=Mon
, 06-Oct-2014 01:22:44 GMT; path=/; domain=.google.com; HttpOnly
P3P: CP="This is not a P3P policy! See
http://www.google.com/support/accounts/bi
n/answer.py?hl=en&answer=151657 for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Connection: close

20

DNS reminder

● DNS provides name to IP address resolution
● Domain names are grouped into zones
● a DNS server provides translation (resolution)

for the names in one zone
● a DNS query contains question Resource

Records
● a DNS response may contain answer RRs,

name server RRs, and additional RRs

21

dig hawaii.edu

;; QUESTION SECTION:

;hawaii.edu. IN A

;; ANSWER SECTION:

hawaii.edu. 1800IN A 128.171.224.100

;; AUTHORITY SECTION:

hawaii.edu. 1800IN NS dns4.hawaii.edu.

hawaii.edu. 1800IN NS dns2.hawaii.edu.

hawaii.edu. 1800IN NS dns1.hawaii.edu.

;; ADDITIONAL SECTION:

dns1.hawaii.edu. 1800IN A 128.171.3.13

dns1.hawaii.edu. 1800IN A 128.171.1.1

dns2.hawaii.edu. 1800IN A 128.171.3.13

dns2.hawaii.edu. 1800IN A 128.171.1.1

dns4.hawaii.edu. 1800IN A 130.253.102.4

22

dig mx hawaii.edu

;; QUESTION SECTION:

;hawaii.edu. INMX

;; ANSWER SECTION:

hawaii.edu. 1800INMX 10 mx1.hawaii.edu.

;; AUTHORITY SECTION:

hawaii.edu. 1800INNS dns1.hawaii.edu.

hawaii.edu. 1800INNS dns4.hawaii.edu.

hawaii.edu. 1800INNS dns2.hawaii.edu.

23

system administration

● suppose a system administrator has to manage a large number
of machines

● for example, three web servers, a DHCP server, a backup
server, a Network Attached Storage (NAS) server, a mail server,
and a few printers

● a large KVM might be useful, but also has limitations:

– all the servers must be in close physical proximity

– there cannot be multiple, remote consoles

– there is no way to get alerts from systems that need
attention

24

Simple Network Management
Protocol

● SNMP uses the network to report status
information and alerts about remote systems

● SNMP messages are carried over UDP
● values can be loaded on demand (pull model),

but when needed and configured appropriately,
alerts are sent independently by the systems
being managed (push)

25

SNMP
Management Information Base

● SNMP needs a machine-independent way to
indicate which item of information is being
requested or sent

● logically, the entire universe of information that
can be accessed is built into a large tree: the
Management Information Base or MIB

● the tree is extensible so individuals and
organization can add their own subtrees --
private MIBs

● the tree is universal and known to all

26

navigating the MIB

● the path through the tree is sufficient to indicate
one specific item (corresponding to a variable in
a programming language)

● the path through the tree can be indicated by a
sequence of numbers, the number of left
siblings of the path being taken

● for example, 0.2.7.5.14.1.7.0 is such an Object
Identifier (OID)

● OIDs are useful for enumerating arrays of
objects, e.g., network interfaces, routing table
entries

27

SNMP programs

● a network management station is used by the
system administrator to monitor multiple
systems

● a management agent must run on every
managed device, get the required information,
and provide it on request

28

SNMP basic operation

● the network management station may send
GET requests to get one or more objects from
specifc agents

● the network management station may also
send SET requests to modify one or more
objects on specifc agents

● agents will send TRAP or INFORM alerts to
network management stations that they have
been configured to alert

● because it uses UDP, SNMP (like DNS) cannot
assume that its operations will be successful.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

