

ICS 351: Today's plan

IPv6

review and more details

HTML

HTTP

web scripting languages

IPv6 header

the IPv6 header is twice as big as the (minimal)
IPv4 header, but simpler (see RFC 2460):

credit: Mro CC BY-SA (https://en.wikipedia.org/wiki/File:Ipv6_header.svg)

IPv6 details

instead of IP header options, there may be extension headers

fragmentation is only done by the sender, and path MTU
discovery is required

upper layer is now required to checksum.

when sent over Ethernet, the Ethertype field is 0x86DD instead
of 0x800. (RFC 2464)

Neighbor Discovery Protocol (NDP, RFC 2461) replaces both
ARP and DHCP, uses IPv6 packets

● IPv6 hosts can self-generate an address:

– fe80::/64 + 64 bits from the MAC address
● or a randomly-chosen 64 bits

IPv6 routing

● almost the same routing protocols as for IPv4:
● RIPng, OSPFv6, BGP with multiprotocol extensions

● more bits for the netmask, so more opportunities
for subnetting

● plenty of (re)configuration!
● but most of it automated

HTML

● HyperText Markup Language

● an in-line way of marking (hyper)text, similar in spirit to TeX/LaTeX, and
inspiring the creation of XML

● part of the markings are about style and formatting: font, size, bold/italic,
bullet lists, etc.

● some markings lead you to other pages or objects, e.g.

 home page, or

objects are identified by URLs (all URLs are also URIs)

● each URL has a protocol (scheme name, e.g. http), a host identifier (DNS
name or IP address), an optional port number (:80 if not specified), and the
path given to the server

typical HTTP interaction

● client is given a URL, splits it into domain name (port) and path

● client resolves domain name to IP address

● client opens a connection to the IP address (port 80, or the given port),
server accepts connection (TCP 3-way handshake)

● client sends HTTP request

● server sends HTTP response

● after parsing response and finding embedded images or other content, client
sends new HTTP requests on same TCP connection

● server replies to each request in sequence

● client matches each response to its request, renders the page

● after a time (typically 30s), the server closes the connection

HTTP request header

● all HTTP is rendered using ASCII. This makes it easy
to read, a little harder to parse

● for example, an HTTP request might look like this:

 GET /~esb/ HTTP/1.1

 Host: www2.ics.hawaii.edu

 Accept: */*

 Connection: close

HTTP response header

● a corresponding HTTP reply might look like this:

 HTTP/1.1 200 OK

 Date: Thu, 19 Nov 2009 05:18:56 GMT

 Server: Apache

 Last-Modified: Wed, 02 Sep 2009 03:17:30 GMT

 ETag: "19abf-2095-4728fb5090680"

 Accept-Ranges: bytes

 Content-Length: 8341

 Connection: close

 Content-Type: text/html

 <html>...

HTTP headers

● in each case, the first line describes the main request or result:

– in the request, the method can be GET, HEAD, POST,
or a few others,

– the path is specified immediately after the request,

– the protocol version follows the path

– in the reply, the version comes first, followed by the
result code, both as a number and as a string

● the remaining lines of the header give more details, sometimes
essential details (e.g. the content type and content length)

● each header ends with an empty line

HTTP/2

● headers are not ASCII, and support compression of header
information

● server can push data that was not requested, for example
images the server knows will be needed to render a web page

● content for several requests can be interleaved on a single TCP
connection

– slow content that the server begins to send early need
not block later fast content

web scripting languages

● web content described by HTML was originally static,
corresponding to files on the server

● since the server is a program, it can generate content
dynamically, e.g. put the user's name (or bank balance) within
the web page

● however, this would require modifying the code of the server

– which is error-prone and hard to do
● so instead, the server program can execute a server-side script

to generate new content to be served

● this script can be written in any language supported by the
system on which the server is running

client-side scripts

● even with a server-side script, each change in the web
page requires an HTTP request and reply, and
requires that the page be rendered again

– HTTP requests and replies can be slow
● usually also requires a mouse click

● to have more interactivity, many browsers have been
designed to execute client-side scripts that can modify
the displayed page

– they may fetch data from the server
● client-side scripts are in Java or (now) Javascript

client-side scripts and security

● while client-side scripts do much to improve the
appearance of pages, there can be concerns
about security and reliability

● client-side scripts let servers execute code on a
client – how does the client know what the code
will do? can the client trust the server?

● in an attempt to address these concerns,
browsers limit what scripts are allowed to do

● not all browsers execute client-side scripts

server-side scripts and security

● bugs in a server-side script can be exploited by
attackers

● server-side scripts that do not thoroughly check
their input are vulnerable, e.g. to SQL injection
attacks

http://xkcd.com/327/

● a server-side script lets the client execute code
on the server

● the server controls what scripts are available,
but not what the clients will do with the scripts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

