

ICS 351: Today's plan

network security

wireless ad-hoc and mesh networks

IPv6

review and more details

HTML

HTTP

web scripting languages

network security

"in the clear" protocol can be easily broken when
information is snooped:

telnet, ftp, http, and many email protocols

encrypted protocols are secure against many
attacks, including someone examining the data:
ssh/scp, https, secure POP/IMAP, PGP

most protocols are not secure against traffic analysis

host security is more concerned with installing
applications, (not) running foreign code,
firewalls/NATs, etc

security principles

it is usually better to have more security than less security

security that inconveniences users is more likely to be resisted or
circumvented

security can lock out people who should have access

data requiring security should not be sent unencrypted over the
Internet

because some of the links may be accessible to adversaries

data requiring security is still sometimes sent unencrypted over
the Internet

though data with monetary value is usually protected

encryption can be at any layer

but is most effective end-to-end

wireless ad-hoc networks

using the ad-hoc mode of 802.11, any machine
("node") may directly talk to any other node

if nodes agree to forward data for each other, they can
form a wireless ad-hoc network

machines may move or go to sleep, so routing can be
challenging

also, the notion of a "link" is different for wired and
wireless networks: successful wireless protocols take
advantage of broadcasting

generally machines should discover each other and
automatically send data to the destination

wireless mesh networks

a wireless mesh network consists of static
wireless nodes

possibly with some wired nodes coordinating to
provide Internet access

mobile nodes may obtain Internet access from
nodes in a mesh network

review: IPv6 addresses

IPv6 uses 128-bit addresses instead of the 32-bit IPv4
addresses

these are written as 8 groups of 4 hex digits separated by
colons:
1234:5678:0000:0000:0000:0008:9ABC:DEF0

leading zeros may be omitted:
1234:5678:0:0:0:8:9ABC:DEF0

a single sequence of all-zero groups can be omitted:
1234:5678::8:9ABC:DEF0

networks are followed by a slash to indicate the number of
bits in the network number: 1234:5678/32

Specific IPv6 addresses

the loopback address is ::1

an interface with a MAC address automatically has a non-
routable IPv6 address: fe80::48 bits of MAC address+16
inserted bits

for example, with a hardware address of
00:01:03:a0:31:51, my non-routable IPv6
address will be fe80::201:3ff:fea0:3151 -- note
the "u" bit is set to one to indicate universal scope

globally routable unicast addresses have a network and
subnetwork number in the most significant 64 bits

ff00::/8 addresses are multicast addresses

IPv6 header

 the IPv6 header is twice as big as the (minimal)
IPv4 header, but simpler (from RFC 2460):

 +-+

 |Version| Traffic Class | Flow Label |

 +-+

 | Payload Length | Next Header | Hop Limit |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-
+-+-+-+-+-+-+-+-+

 |
 |

 +
 +

 |
 |

 + Destination Address
 +

 |
 |

 +
 +

 |
 |

 +-
+-+-+-+-+-+-+-+-+

IPv6 details

instead of IP header options, there may be extension headers

fragmentation is only done by the sender, and path MTU
discovery is required

upper layer is now required to checksum.

when sent over Ethernet, the Ethertype field is 0x86DD instead
of 0x800. (RFC 2464)

Neighbor Discovery Protocol (NDP, RFC 2461) replaces both
ARP and DHCP, uses IPv6 packets

● IPv6 hosts can self-generate an address:

– fe80::/64 + 64 bits from the MAC address
● or a randomly-chosen 64 bits

IPv6 routing

● almost the same routing protocols as for IPv4:
● RIPng, OSPFv6, BGP with multiprotocol extensions

● more bits for the netmask, so more opportunities
for subnetting
● and plenty of (re)configuration!

HTML

● HyperText Markup Language

● an in-line way of marking (hyper)text, similar in spirit to TeX/LaTeX, and
inspiring the creation of XML

● part of the markings are about style and formatting: font, size, bold/italic,
bullet lists, etc.

● some markings lead you to other pages or objects, e.g.

 home page, or

objects are identified by URLs (all URLs are also URIs)

● each URL has a protocol (scheme name, e.g. http), a host identifier (DNS
name or IP address), an optional port number (:80 if not specified), and the
path given to the server

typical HTTP interaction

● client is given a URL, splits it into domain name (port) and path

● client resolves domain name to IP address

● client opens a connection to the IP address (port 80, or the given port),
server accepts connection (TCP 3-way handshake)

● client sends HTTP request

● server sends HTTP response

● after parsing response and finding embedded images or other content, client
sends new HTTP requests on same TCP connection

● server replies to each request in sequence

● client matches each response to its request, renders the page

● after a time (typically 30s), the server closes the connection

HTTP request header

● all HTTP is rendered using ASCII. This makes it easy
to read, a little harder to parse

● for example, an HTTP request might look like this:

 GET /~esb/ HTTP/1.1

 Host: www2.ics.hawaii.edu

 Accept: */*

 Connection: close

HTTP response header

● a corresponding HTTP reply might look like this:

 HTTP/1.1 200 OK

 Date: Thu, 19 Nov 2009 05:18:56 GMT

 Server: Apache

 Last-Modified: Wed, 02 Sep 2009 03:17:30 GMT

 ETag: "19abf-2095-4728fb5090680"

 Accept-Ranges: bytes

 Content-Length: 8341

 Connection: close

 Content-Type: text/html

 <html>...

HTTP headers

● in each case, the first line describes the main request or result:

– in the request, the method can be GET, HEAD, POST,
or a few others,

– the path is specified immediately after the request,

– the protocol version follows the path

– in the reply, the version comes first, followed by the
result code, both as a number and as a string

● the remaining lines of the header give more details, sometimes
essential details (e.g. the content type and content length)

● each header ends with an empty line

HTTP/2

● headers are not ASCII and support compression of header
information

● server can push data that was not requested, for example
images needed to render a web page

● content for several requests can be interleaved on a single TCP
connection

– meaning slow content that the server begins to send
early need not block later fast content

web scripting languages

● web content described by HTML was originally static,
corresponding to files on the server

● since the server is a program, it can generate content that is
generated dynamically, e.g. put the user's name (or bank
balance) within the web page

● however, this requires the server administrator to modify the
code of the server, which is error-prone

● so instead, the server program can execute a server-side script
to generate new content to be served

● this script can be written in any language supported by the
system on which the server is running

client-side scripts

● even with a server-side script, each change in the web
page requires an HTTP request and reply, and
requires that the page be rendered again

● and usually requires an explicit user action such as a
mouse click

● to have more interactivity, many browsers have been
designed to execute client-side scripts that can modify
the displayed page and exchange data over the
internet

● client-side scripts are usually in Java or Javascript

client-side scripts and security

● while client-side scripts do much to improve the
appearance of pages, there can be concerns
about security and reliability

● client-side scripts let servers execute code on a
client – how does the client know what the code
will do? can the client trust the server?

● in an attempt to address these concerns,
browsers limit what scripts are allowed to do

● not all browsers execute client-side scripts

server-side scripts and security

● bugs in a server-side script can be exploited by
attackers

● server-side scripts that do not thoroughly check
their input are vulnerable, e.g. to SQL injection
attacks

http://xkcd.com/327/

● a server-side script lets the client execute code
on the server

● the server controls what scripts are available,
but not what the clients will do with the scripts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

