ICS 351: Today's plan

- Learning Switches
- Spanning Tree Protocol
- IP addresses
- Network Address Translation
- Dynamic Host Configuration Protocol
- Small Office / Home Office configuration

Learning Switches Learning Bridges

- if a switch gets a packet from A on interface I, it forwards the packet,
- and remembers that A can be reached on interface /
- the next time a packet for A is received on interface I ', it is only forwarded on interface I
* if $I==I$ ', the packet is not forwarded at all
- if there is no record of communication from A (within the last x seconds, $x \sim 60$), the packet is broadcast on all interfaces except I^{\prime}

Broadcast Storms

* given a network with redundant links
- if the network is connected by hubs, every packet will cause collisions with itself
- if the network is connected by switches, any broadcast packet will live forever
- if there is more than one loop, packets will be multiplied
- this useless traffic gets in the way of useful traffic -- a "broadcast storm"

Preventing Broadcast Storms: the Spanning Tree Protocol, STP

1. have no redundant links in the network, or
2. restrict "broadcast" forwarding by switches:
s select a root switch, based on priority, using MAC addresses to break ties in case of equal priority

- find a least-cost path to the root, reached via the root port for this switch
- for each segment, determine a least-cost switch port to use to reach the root, the designated port for this segment
= only forward broadcasts along root ports and designated ports
* root ports and designated ports form a Spanning Tree

Rapid Spanning Tree Protocol RSTP

- the regular spanning tree protocol can take tens of seconds to converge after a topology change
- instead, a switch can pre-select alternate ports that also lead to the root bridge
- broadcast data is only sent on alternate ports when it is determined that the root port is disconnected
- similarly for backup paths to individual segments
- switches also actively exchange their information, so one switch can quickly hand off forwarding to another switch

IP address exhaustion

- IPv4 addresses are 32 bits long
- so there should almost be one address per person on the planet (are there still many people on the planet who do not own a computer?)
- however, IP addresses must be assigned within networks
* renumbering networks is time-consuming and expensive
- so, there is an effective shortage of IPv4 addresses, especially in some areas

Handling IP address exhaustion

- three techniques are used to deal with this shortage:
- use a single address to connect to the Internet multiple computers: Network Address Translation, or NAT
* assign an IP address to a computer only when it is needed: Dynamic Host Configuration Protocol, or DHCP
- switch to IPv6, with 2^{128} addresses
- all three techniques are common today
- but IPv4 is still required for full internet connectivity

Network Address Translation

- both TCP and UDP use ports to identify different applications on one computer
- most computers use far fewer than the 65,536 ports they could use
- so, multiple computers could share a single IP address, and just agree to use different ports
* since all computers share the same IP address, the combination of <internal port, external port, external IP> is what uniquely identifies the socket and source computer

Network address translation setup

- in a NATed network, the computers run as if they were on the Internet - no special setup is needed
- each interface is assigned an IP address from a reserved space, 10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16 -- these are non-routable IP addresses
" the "router" for this private network also
" runs DHCP to assign these addresses,
* is configured as the private computers' default gateway, and
- must acquire or be configured with the external IP addresses

Network address translation details

* the NAT unit examines each packet being forwarded and change some of the headers:
s for every outgoing packet, the private source address must be replaced with the public source address. The combination of <internal port, external port, internal IP, external IP> is recorded in a table
s for every incoming packet, the external (destination) IP must be replaced with the correct internal IP address taken from the table
s if two or more machines on the internal network are using the same port number, the NAT unit generally also changes the port number
* the NAT table can also have static entries, for example pointing to a web server on the inside network
* the only limitation is that there cannot be two servers on the same port (e.g. port 80) on the inside network
* so to the outside, the entire private network behaves as a single computer, with any number of client and server programs

Firewalls

" this "router" can also discard any incoming packets for ports not listed in its table, or for statically configured ports

- this prevents outside access to applications (e.g. printers) that are available inside the networks
: this also prevents outside access to applications that were installed automatically, and that the user is unaware of
" both of these are security risks, so the job of blocking "ports" is called firewalling, and such units are known as firewalls
* although the firewall function can be present in a "router" or a NAT unit, it can also be present in software on each computer
* the Linux nftables (previously iptables) is general enough to allow forwarding as well as blocking of packets

Dynamic Host Configuration Protocol

s in our lab, computers have statically-configured IP addresses

* we also manually reconfigure IP addresses when needed
* when there are lots of computers or non-technical users, this becomes very cumbersome
s instead, a network administrator could decide the assignment of IP addresses centrally, and let a central computer distribute IP addresses
s however, the computer is not really on the Internet until it has an IP address
s so DHCP (like ARP) cannot use IP packets
* each address is leased for a given period of time, then must be renewed
s in most DHCP servers, renewal is automatic unless the network administrator decides otherwise
s so the lease expiration simply makes it easier to recycle addresses
夫 the system administrator decides the lengths of leases, which IP address ranges are available for DHCP, etc

DHCP address assignment

- each address is leased for a given period of time, then must be renewed
- in most DHCP servers, renewal is automatic unless the network administrator decides otherwise
- so the lease expiration simply makes it easier to recycle addresses
* the system administrator decides the lengths of leases, which IP address ranges are available for DHCP, etc

Putting it all together

s many small office / home office (SOHO) networks are connected to the Internet by a single "router"

ะ this "router" runs no routing protocols, and may use DHCP to obtain its address from the Internet Service Provider
s or, if there are significant servers on the SOHO network, the IP address may be static and manually configured
s this "router" acts as a default router for the SOHO network, forwarding to its own default router (configured, or obtained by DHCP) all packets from the inside to the outside
s this "router" always performs NAT, to allow the sharing of the IP address
s this "router" usually performs some sort of firewalling
s for example, the firewall might by default allow all outgoing connections/streams, initiated by a computer inside, but not connections or streams initiated by outside computers
s but data for valid connections (streams) must still flow in both directions

