

ICS 351: Today's plan

● IP multicasting
● IGMP
● PIM
● TCP and UDP
● port numbers
● congestion control

IP Multicast Addresses

● IP multicast addresses are in class D, beginning with 224
through 239

● 1. the first byte for class A addresses is 0 through 127
● 2. the first byte for class B addresses is 128 through 191
● 3. the first byte for class C addresses is 192 through 223
● 4. the first byte for class D addresses is 224 through 239
● 5. the first byte for class E addresses is 240 through 255
● for example, 224.0.0.9 for RIP packets, 224.0.0.5 for OSPF

packets

IP Multicasting

● In ICS 351, we use multicast addresses to
forward routing packets within a local network

● IGMP manages group membership in multicast
groups within local networks (MLD does the
same on IPv6 networks)

● PIM (or MOSPF) are the equivalent of routing
protocols for multicast, providing multicast
routing when the multicast router is not local

IGMP

● Internet Group Management Protocol version 3, RFC 3376
● communication between a multicast router and local

multicast hosts
● the router needs to know which hosts require which multicast

stream(s), so as to only forward streams that are needed
● a host requests a stream from its router

● the router should record this information

● requests expire if not refreshed: soft state in the router
● messages sent over IP (protocol number 2) with TTL 1
● IGMP routers send Membership Queries, IGMP hosts send

Membership Reports

PIM

● Protocol Independent Multicast
● protocol-independent means any routing protocol may provide the routes

● PIM dense mode (PIM-DM), RFC 3973
● in dense mode, multicast data is sent to all routers except those

that send prune messages
● dense mode is only used within an autonomous system (with

MSDP used to allow multicast among autonomous systems)
● PIM sparse mode (PIM-SM), RFC 4601
● in sparse mode, multicast data is broadcast over a tree rooted at a

designated router called the Rendezvouz Point (RP)
● also PIM Source-Specific Multicast (PIM-SSM) and Bidirectional

PIM (BIDIR-PIM), a variant of PIM-SM

TCP and UDP

layered above IP (header follows
IP header)

provide another layer of
addressing: port numbers, which
let us identify applications
(sockets) within hosts

UDP

UDP (RFC 768) essentially only provides port numbers and a checksum:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 ++++++++++++++++++++++++++++++++
+

 | Source Port | Destination Port
|

 ++++++++++++++++++++++++++++++++
+

 | Length | Checksum
|

 ++++++++++++++++++++++++++++++++
+

http://www.rfc-editor.org/rfc/rfc768.txt

TCP Header

RFC 793 and RFC 1122
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+++++++++++++++++++++++++++++++++

| Source Port | Destination Port |

+++++++++++++++++++++++++++++++++

| Sequence Number |

+++++++++++++++++++++++++++++++++

| Acknowledgment Number |

+++++++++++++++++++++++++++++++++

| Data | |C|E|U|A|P|R|S|F| |

| Offset|Resrved|W|C|R|C|S|S|Y|I| Window |

| | |R|E|G|K|H|T|N|N| |

+++++++++++++++++++++++++++++++++

| Checksum | Urgent Pointer |

+++++++++++++++++++++++++++++++++

| Options | Padding |

+++++++++++++++++++++++++++++++++

| data |

+++++++++++++++++++++++++++++++++

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc1122.txt

TCP Behavior

TCP control bits (SYN, FIN, ACK, RST) help
maintain TCP connections

three-way handshake is SYN, with SYN-
ACK in answer, and a final ACK to confirm
receipt of the second packet

32-bit sequence number, ack number count
bytes rather than packets

an ack is sent, almost for free (piggyback) in
every packet except the first

TCP Window

window tells the recipient how many more bytes
(past the ack) the sender of this packet is willing
to receive -- flow control, slowing down the
sender to avoid overwhelming a slow receiver

this is the flow control window

setting the window to zero forces the sender to
stop

in general, TCP can send one window every
RTT (round-trip time)

port numbers

an IP address identifies an interface, and by extension a machine

a port number identifies an application within a machine

servers listen on specific, well-known ports

each local port can be used for multiple sockets, as long as (at
least) one of these is different: local/remote IP, local/remote port,
protocol

note:

a socket has a local and a remote port (and IP addresses)

a packet has a source and a destination port (and IP addresses)

local and remote make sense on a host

source and destination make sense for a packet

Congestion Collapse

reminder: the network hardware might be working fine, but
if the software fails, the network goes down

e.g. if the routing tables include loops, packets will not get
delivered

imagine a retransmission mechanism where, when a
packet is lost, I resend the lost packet and also a new one

if a packet is lost due to congestion, the first little
congestion experienced will likely lead to more congestion

this happened a couple of times in the 1970's -- the
network hardware was working fine, but almost no data
would get through

TCP Congestion Control

to control congestion, TCP slows down substantially
(half the speed) when packets are lost

TCP then slowly speeds up its transmission rate
when no packets are lost.

this is controlled by a window that (unlike the flow
control window above) is maintained on each
sender, and never communicated: the congestion
window

the effective window is the smaller of the flow control
window and the congestion window

TCP Congestion Control: details

when packets are lost, the congestion window shrinks to
about half its previous size

actually it shrinks to one packet (one Maximum Segment Size)

then grows exponentially to half the previous window

every RTT when no packets are lost, the congestion
window grows by one packet (one MSS)

since each TCP can send one window every RTT,
shrinking the window slows down sending

TCP also has other mechanisms to lessen congestion:

binary exponential backoff on retransmissions

adaptive timers to more reliably detect packet loss

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

