Sockets

" programming using sockets
= socket types

= socket operations

= sockets example (in C)

programming using sockets

= networking programs communicate (send and
receive) over a special programming construct
called a socket

= a socket Is an endpoint of communication

= communication can only occur between two (or
more) sockets

= a socket Is an abstract data type (ADT): an
opague type that supports a set of operations

socket types

* [N common usage, a socket is either a TCP
socket or a UDP socket

= TCP sockets are STREAM sockets
~ UDP sockets are DATAGRAM sockets

= there are more specialized (and less portable)
socket types, including raw sockets (raw frames
on the interface) and packet sockets (IP
datagrams)

socket types: address families

= a socket, when first created, I1s not associated
(bound) to any address

= a socket can only be bound to one type of
address, e.g. IPv4 (INET) or IPv6 (INET6)

~ IPv6 sockets usually also support IPv4

= we may bind a socket to a local address and
port number, and/or connect a socket to a
remote address and port number

= UDP Is connectionless, but connect can be used to
specify a remote address that is used by default

socket types: connection status

= a socket, when first created, IS not connected

= connect works as a client to connect to a server

= accept works as a server to accept incoming
connections

* accept creates a new socket for each connection
~ the socket used in accept must be in the listen state

= once done, we should close connections
~ OS closes any open sockets when programs exit

socket operations: create and close

~ socket creates a nhew socket

~ accept creates new sockets given a listen socket
* [isten puts an unconnected socket in listen state

~ close closes a socket

= shutdown can “half close” a socket, by sending
a FIN but allowing subsequent receives

socket operations: bind and connect

= bind specifies the local port number, and
optionally the local address

~ Cconnect.

= for TCP, does the 3-way handshake
* accept on the server side responds
= for UDP, specifies the remote address

socket operations: send and receive

= send sends a buffer of specified length

= sendto Is like send, but for unconnected sockets, so
also specifies an address

= recv receives into a buffer up to the specified length

= recvfrom is like recv, but for unconnected sockets, so
reports the address from which the datagram was
received.

= all return the number of bytes sent/received

= or -1 for errors, or O for a closed connection or other
special situations

sockets example: client

int s;

if ((s = socket(AF INET, SOCK STREAM, 0)) < 0)
error ("socket");

hostentry = gethostbyname("example.com") ;

if ((hostentry == NULL) || (hostentry->h addr list == NULL))
error ("gethostbyname");

memset (&sin, 0, sizeof (sin));

sin.sin family = AF INET;

memcpy (&(sin.sin addr), hostentry->h addr 1list[O0],

hostentry->h length);

sin.sin _port = htons(portnumber) ;

if (connect(s, (struct sockaddr *)(&sin), sizeof(sin)) < 0)
error ("connect");

if (send(s, buf, sizeof(buf), 0) < 0) error("send");

if (close(s) < 0) error("close");

sockets example: server

int passive, session;
if ((passive = socket(PF _INET, SOCK STREAM, 0)) < 0)
error ("socket");
memset (&sin, 0, sizeof (sin));
sin.sin family = AF INET;
sin.sin port = htons(portnumber);
sin.sin addr.s_addr = INADDR ANY;
if (bind(passive, (struct sockaddr *) (&sin), sizeof (sin)) != 0)
error("bind");
if(listen(passive, 5) < 0) error("listen");
int adrsize = sizeof (sin);
while ((session = accept(passive, sap, &adrsize)) >= 0) {
count = recv(session, buf, BUFSIZE - 1, 0);
if (close(session) < 0) error("child close");

adrsize = sizeof (sin);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

