

Sockets

programming using sockets

socket types

socket operations

sockets example (in C)

programming using sockets

networking programs communicate (send and
receive) over a special programming construct
called a socket

a socket is an endpoint of communication

communication can only occur between two (or
more) sockets

a socket is an abstract data type (ADT): an
opaque type that supports a set of operations

socket types

in common usage, a socket is either a TCP
socket or a UDP socket

TCP sockets are STREAM sockets

UDP sockets are DATAGRAM sockets

there are more specialized (and less portable)
socket types, including raw sockets (raw frames
on the interface) and packet sockets (IP
datagrams)

socket types: address families

a socket, when first created, is not associated
(bound) to any address

a socket can only be bound to one type of
address, e.g. IPv4 (INET) or IPv6 (INET6)

IPv6 sockets usually also support IPv4

we may bind a socket to a local address and
port number, and/or connect a socket to a
remote address and port number

UDP is connectionless, but connect can be used to
specify a remote address that is used by default

socket types: connection status

a socket, when first created, is not connected

connect works as a client to connect to a server

accept works as a server to accept incoming
connections

accept creates a new socket for each connection

the socket used in accept must be in the listen state

once done, we should close connections

OS closes any open sockets when programs exit

socket operations: create and close

socket creates a new socket

accept creates new sockets given a listen socket

listen puts an unconnected socket in listen state

close closes a socket

shutdown can “half close” a socket, by sending
a FIN but allowing subsequent receives

socket operations: bind and connect

bind specifies the local port number, and
optionally the local address

connect:

for TCP, does the 3-way handshake

accept on the server side responds

for UDP, specifies the remote address

socket operations: send and receive

send sends a buffer of specified length

sendto is like send, but for unconnected sockets, so
also specifies an address

recv receives into a buffer up to the specified length

recvfrom is like recv, but for unconnected sockets, so
reports the address from which the datagram was
received.

all return the number of bytes sent/received

or -1 for errors, or 0 for a closed connection or other
special situations

sockets example: client

 int s;

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 error("socket");

 hostentry = gethostbyname("example.com");

 if ((hostentry == NULL) || (hostentry->h_addr_list == NULL))

 error("gethostbyname");

 memset (&sin, 0, sizeof (sin));

 sin.sin_family = AF_INET;

 memcpy(&(sin.sin_addr), hostentry->h_addr_list[0],

 hostentry->h_length);

 sin.sin_port = htons(portnumber);

 if (connect(s, (struct sockaddr *)(&sin), sizeof(sin)) < 0)

 error("connect");

 if (send(s, buf, sizeof(buf), 0) < 0) error("send");

 if (close(s) < 0) error("close");

sockets example: server

 int passive, session;

 if ((passive = socket(PF_INET, SOCK_STREAM, 0)) < 0)

 error("socket");

 memset (&sin, 0, sizeof (sin));

 sin.sin_family = AF_INET;

 sin.sin_port = htons(portnumber);

 sin.sin_addr.s_addr = INADDR_ANY;

 if (bind(passive, (struct sockaddr *) (&sin), sizeof (sin)) != 0)

 error("bind");

 if(listen(passive, 5) < 0) error("listen");

 int adrsize = sizeof (sin);

 while ((session = accept(passive, sap, &adrsize)) >= 0) {

 count = recv(session, buf, BUFSIZE - 1, 0);

 if (close(session) < 0) error("child close");

 adrsize = sizeof (sin);

 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

