Security: outline

: networking security
: security principles
: encryption
: authentication

networking security

: "in the clear" protocol can be easily broken when information is snooped: telnet, ftp, http, many email protocols
: encrypted protocols are secure against many attacks, including someone examining the data: ssh/scp, https, secure POP/IMAP, PGP
: most protocols are not secure against traffic analysis
: host security is more concerned with installing applications, running foreign code, firewalls/NATs, etc
: without host security it is hard to have network security

security principles

: it is usually better to have more security than less security
: security that inconveniences users is more likely to be resisted or circumvented
: security can lock out people who should have access
: data requiring security should not be sent unencrypted over the Internet
: because some of the links may be accessible to adversaries
: data requiring security is still occasionally sent unencrypted over the Internet

security: attack and defense

: Alice, Bob, Charlie and Eve
: attackers just need one way to get information
: may not be a direct way
: some information gives access to other information
: defenders can set everything up the strongest possible way
: which software to run
: firewalls, ssh/ssl, etc
: knowledge gives power
: whoever knew about heartbleed could use it to snoop

networking security

: given that the hosts are secure and the networks are not, can we communicate securely?
: authentication: who created this message?
: digital signatures
: confidentiality: who can read this message?
: different types of encryption
: asymmetric (public-key) encryption, e.g. RSA, Elliptic Curves
:: symmetric (secret-key) cryptography, e.g. AES, DSA
: generally regarded as safe if the (private) key is secret
: may be vulnerable if quantum computing is successful

encryption

: mathematical function encrypt(K, m) gives c
: to decrypt, decrypt(K,c) gives m
: for public key systems, decrypt(K', c) gives m
: the only secret is the key, K or K^{\prime}
: key must be chosen at random and have a sufficient number of bits
: the number of bits depends on the technology of the day

one-time pad

: symmetric key system
: key must have as many bits as the message
: encrypt(K, m) = K XOR m
: decrypt(K, c) $=$ K XOR c
: demonstrably secure as long as the key is only used once
: what can happen if the key is used twice?

authentication

: auth(m,token) gives signed message
: verify(signed message, token) gives true/false
: if sender and receiver have the same token, compute $\mathrm{h}=$ hash(message + token)
: send $\mathrm{m}=$ message +h
: receiver compares hash(message + token) to h
: only someone with the token can verify the message
: if the hash is cryptographically secure, it is hard to obtain the token given only m

