
  

ICS 351: Today's plan

● routing protocols

● linux commands  



  

Routing protocols: overview

● maintaining the routing tables is very labor-intensive if 
done manually

– so routing tables are maintained automatically:

– each router knows what networks it is 
connected to

– and communicates that to other routers

– a routing protocol defines how routing 
information is communicated among routers

– popular routing protocols are OSPF, BGP, RIP
● with the information from the routing protocol, each 

router can build and maintain its routing tables



  

Routing protocols: properties

● routing is not a perfect process: sometimes the routing 
tables are inconsistent, because it takes time for a 
router to discover changes and it takes time to 
communicate the new information

– if a router doesn't have a route to a packet's 
destination, it will drop the packet, i.e., not 
forward it

● most of the time routing protocols maintain the routing 
tables correctly

– much faster than with manual updates



  

Router hardware and software

● big, expensive Cisco routers

● inexpensive Linux boxes with multiple network interfaces

● a Linux general-purpose computer can:

–  use routing software to route packets

–  just as the expensive Cisco router can

–  but not as fast

–  and perhaps not on the same media 

● an expensive router should have hardware acceleration for

–  looking up routes in a routing table, and

–  forwarding packets from one interface to another 

● the software to run the routing protocol might be very similar on a 

generic box and on an expensive specialized router 



  

Command line

● the part of an operating system (or an application) that interfaces 
with a user is the user interface, sometimes called a shell 

● most user interfaces are graphical: significant parts of the 
functionality are accessible through the mouse and windows 

● many system functions use a simpler user interface, which is text 
based 

● the user gets a prompt whenever the system is ready to handle 
new commands 

● the user can type commands, which the system then executes 
● the commands may print output on the screen or, less commonly, 

request input from the users 



  

Unix/Linux shell

● on Unix systems, including Linux, commands are interpreted by an 
application program called the shell 

● there are many possible Linux shells, but this class will use the 
default, which is bash (Bourne-Again SHell). Another notable shell 
is tcsh. 

● some commands are built-in to the shell, but usually a command 
entered on the shell results in executing an application 

● the typical shell command syntax is: 
●command ­switch .. ­­switch parameter .. parameter
● the most important command to remember is man, short for manual, 

which gives information about other commands
● e.g. man ls gives the manual "page" for the ls command 



  

Useful Unix commands and concepts

●shells on Linux usually implement commands from the Unix family of operating 
systems 

●ls lists files and directories (ls -a also lists files beginning with ".") 
●pwd displays the name of the current directory, and cd changes the current directory 
●mkdir name creates the directory name, and rmdir name removes it if it is empty
●rm name removes the file (permanently!) 

●rm -i name asks first 
●cp name1 name2 copies the file name1 to another file (or directory) name2 

●mv name1 name2 moves/renames the file name1 to another file (or directory) name2 

●in Unix, the root of the file system is "/", and "/" is also used as a separator at the 
end of directory names, e.g. /etc/hosts is the name of a file in the directory /etc 
(or /etc/) 

●mount /dev/sdb1 /mnt/mydisk makes the file system on the device /dev/sdb1 accessible 
as /mnt/mydisk, assuming such a device is connected and such file system exists 

●to safely remove the device, simply umount /mnt/mydisk 



  

Unix/Linux file commands

gedit file runs the gedit text editor on the file 

more file displays the contents of the file, one screenful at a time 

cat file does the same, without stopping 

the output of a command can be sent ("piped") to the input of another command, or directly to a file 

cat file > file2 is another way of copying file to file2 

cat file >> file2 appends file to the end of file2 

cat file | tee file2 shows the contents of file and also writes them to file2 

command x > file & tail -f file  puts the output of the command into file, and also shows the 
growing contents of file 

the & at the end of the command puts its execution into the background, so the shell prompts again 
while the command is still running 

a command in the background can be brought to the foreground with fg 

Ctrl-Z (^Z) can be used to suspend a running foreground command, and bg will send it to the 
background 

Ctrl-C (^C) will normally kill a foreground command 

jobs will show the running background command, kill %3 will kill background command 3, and pkill 
abcd will kill  command abcd 



  

Special shell constructs

●a pipe is a sequence of commands separated by |
●the output of the first command is the input to the second command
●the output of the (n-1)th command is the input to the nth command
●an input redirect ‘<’ is usually only found on the first command in a pipe
●an output redirect ‘>’ is usually only found for the last command in a pipe
example: tr '\n' ' ' < file.html | sed 's/<[^>]*>/ /g' > file.txt

● an ‘&’ starts the previous command in the background, then executes the next 
command (if any)

example: sleep 100 &
●‘jobs’ lists the commands that are running in the background
●‘fg’ puts a background command in the foreground
●Control-Z stops the currently executing command
●control-C kills the currently executing command

●part of a command in `backticks` is executed and replaced with its output

more `grep ­l foo *`     runs “more” on the file names printed by grep
●‘single quotes’ and “double quotes” are used for any parameter that contains 
spaces or other special chars

●the backslash \ is used as an escape
●the star * matches anything, e.g. ba* matches bar and baz



  

Unix/Linux networking commands

telnet host port connects to the given port on the given host: 

if there is a telnet server on that port of the given host, then allows entering commands 
remotely (but very insecurely) 

ftp host opens a File Transfer Protocol session to the given host (assuming there is an FTP server 
running there) 

ftp supports simple commands to transfer files, including ls, cd, lcd, binary, ascii, get, 
mget, put, mput, quit 

both telnet and ftp transfer everything in the clear 

anyone with access to the network can see what is transferred 

modern systems use encrypted transfers, particularly based on the secure shell with the two 
commands ssh and scp 

ssh host or ssh -p port host 

scp file host:remote/path, or scp host:remote/path local/path, or scp -P 
port host:remote/path local/path 

ping host sends packets to a host that are likely to elicit replies, and prints any replies it gets

traceroute host sends packets that are likely to be dropped enroute to a host, and prints the error 
messages 



  

nc/netcat

on one computer, or in one 
window, run:
nc ­l 12345

on the other side, run:
nc <IP address> 12345

now, anything typed in one  
(window, computer) appears in 
the other


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

