ICS 451: Today's plan

- ICMP
 - ping
 - traceroute
- ARP
- DHCP
- summary of IP processing
ICMP

• Internet Control Message Protocol, 2 functions:
 – error reporting (never sent in response to ICMP error packets)
 – network debugging (ping)

• common errors packets include
 – destination unreachable (network, host, protocol, or port unreachable)
 – fragmentation needed
 – TTL expired (Time Exceeded)
 – redirect
 – parameter problem
ICMP error message format

- IP header, ICMP header, IP header of error packet, 64 bits (8 bytes) of IP payload of error packet
- ICMP header (8 bytes) has type (e.g. destination unreachable), code (e.g. host unreachable) and 4 or more bytes that vary depending on the type
Ping

- ICMP type ECHO, code 0
- ICMP type ECHO REPLY, code 0
- 4 extra bytes hold two bytes of ID (usually process ID) and two bytes of sequence number
- any additional bytes carry sender's time, in binary (usually 8 bytes)
 - when the packet returns, can compare time received (from system) with time sent (in packet)
Traceroute

- When a router drops a packet, it sends back a Time Exceeded in Transit ICMP error
- so if I send a packet with TTL 1, my router should send me an error
- TTL 2, the next router should send me an error
- ...
- the final host should send me port unreachable
 - sometimes blocked by firewalls
Traceroute example, IPv4

edo@uhx01 1 % traceroute -n www.ietf.org

traceroute to www.ietf.org (104.20.1.85), 30 hops max, 40 byte packets

1 128.171.24.193 0.345 ms 0.297 ms 0.186 ms
2 128.171.1.201 1.478 ms 1.127 ms 1.172 ms
3 128.171.64.190 1.085 ms 0.945 ms 1.008 ms
4 205.166.205.48 1.021 ms 0.863 ms 1.083 ms
5 74.202.119.9 1.541 ms 1.598 ms 14.653 ms
6 64.129.238.190 70.884 ms 52.823 ms 73.906 ms
7 * 4.68.71.137 54.391 ms 54.440 ms
8 4.69.144.138 54.595 ms 4.69.144.202 53.114 ms 4.69.144.74 52.828 ms
9 4.68.70.130 53.027 ms 58.414 ms 55.843 ms
10 62.115.32.214 84.881 ms 81.319 ms 81.322 ms
11 104.20.1.85 62.808 ms 62.954 ms 55.745 ms
Traceroute example, IPv6

$ traceroute6 -n www.ietf.org

traceroute to www.ietf.org
(2400:cb00:2048:1::6814:55), 30 hops max, 80 byte packets

1 2001:470:a:446::1 71.683 ms 73.466 ms 75.001 ms

2 2001:470:0:9b::1 85.305 ms 85.277 ms 85.256 ms

3 2001:504:16::3417 75.380 ms 75.373 ms 75.324 ms

4 2400:cb00:28:1024::6ca2:f46a 75.116 ms
 2400:cb00:28:1024::6ca2:f415 75.430 ms
 2400:cb00:28:1024::6ca2:f46a 75.243 ms
Traceroute from a remote place

$ traceroute -n www.hawaii.edu

traceroute to www.hawaii.edu (128.171.224.100), 30 hops max, 60 byte packets

<table>
<thead>
<tr>
<th>Hop</th>
<th>IP Address</th>
<th>Time (ms)</th>
<th>TTL</th>
<th>Packet Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.3.1</td>
<td>2.092</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>192.168.2.254</td>
<td>2.851</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>192.168.2.1</td>
<td>4.487</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>133.205.178.201</td>
<td>10.316</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>192.168.4.1</td>
<td>715.377</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>182.33.57.117</td>
<td>747.101</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>182.33.57.213</td>
<td>805.668</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>* * 69.43.227.5</td>
<td>879.163</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>64.128.3.1</td>
<td>908.117</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>66.192.243.238</td>
<td>819.116</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>74.202.119.10</td>
<td>792.610</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>128.171.213.2</td>
<td>739.577</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
Path MTU discovery

• sender sends as big packets as its network MTU can support
 – if TCP MSS option is present in the SYN packets, sender will use the smaller of its own and its peer's MSS
 – TCP also sets the Don't Fragment (DF) bit
 • routers cannot fragment IPv6 packets
• router that cannot forward, sends destination unreachable, fragmentation needed
 – payload indicates MTU of interface
• next router may do the same again!
Deprecated ICMP messages

- **source quench**: send to a sender that is filling up a router's buffers
 - increases traffic during congestion
 - apparently not very effective

- **redirect**: on this same network, for this destination, use this other router
 - can be used for man-in-the-middle attacks
 - might still work on many systems (there are other ways to do MITM)
IP over Data-Link layer

- when sending or forwarding an IP packet, the routing table gives us interface and next hop
- the next hop is an IP address
- the data link layer requires a MAC address
- we need to *resolve* the IP address to a MAC address
- then the packet can be sent to the MAC address of the next hop
Address Resolution Protocol

- ARP cache saves IP->MAC mappings
 - for a few minutes unless refreshed
- mapping obtained by broadcasting a request
 - Who has 1.2.3.4? tell 5.6.7.8
- response is unicast to the MAC in the request
- responder (and everyone else) also caches the mapping in the request
ARP Variants

- Reverse ARP (RARP): given a MAC address, give me an IP address
 - similar to DHCP, but less commonly used
- Proxy ARP: another device replies “for” the device that has the IP address
 - invisible to the requester
 - useful on non-broadcast networks
 - as long as request sent to the Proxy ARP server
 - other uses as well
ARP Security

- ARP Spoofing: an ARP reply with incorrect information
 - can make an IP unreachable
 - can make an attacker the Man-In-The-Middle
- only defense is to monitor the LAN for strange ARP replies
 - e.g. several replies for the same request
DHCP

- Dynamic Host Configuration Protocol
- each interface needs an IP address
- configuring each by hand is tedious and error-prone
- instead, configure them all in a DHCP server, let the server tell the machines when they boot
- can also have a “pool” of addresses
 - assigned on demand to anyone on the network
- less administration, less chance of people selecting an address at random
Summary: IP processing for incoming packets

• compute IP header checksum
 – discard if incorrect
• reassemble if necessary
• if destination address is one of ours
 – check protocol field
 • deliver to TCP or UDP
 • or do ICMP processing
 – including delivery to ping/traceroute
• otherwise decrement TTL, forward packet
 – if TTL==0 or not forwarding, discard packet
DHCP Information

- Interface IP address
- Netmask
- Default Gateway(s)
- Default Name Server(s)

and quite a bit more!
DHCP Transmission

- DHCP is carried over UDP
- but sender may not have an IP address!
 - nor know IP address of DHCP server
- DHCP packets sent from 0.0.0.0 to 255.255.255.255
 - and over the LAN broadcast address, usually ff:ff:ff:ff:ff:ff
Summary: IP processing for incoming packets

- compute IP header checksum
 - discard if incorrect
- reassemble if necessary
- if destination address is one of ours
 - check protocol field
 - deliver to TCP or UDP
 - or do ICMP processing
 - including delivery to ping/traceroute
- otherwise decrement TTL, forward packet
 - if TTL==0 or not forwarding, discard packet
Summary: IP processing for outgoing packets

- find longest-match route `next-hop-IP,interface`
- compare packet size to MTU of `interface`
 - fragment if needed (or discard if DF==1)
- compute IP header checksum
- check ARP table for `next-hop-IP`
 - if not found, ARP on `interface` and wait for response
- send packet on `interface`, to MAC address corresponding to `next-hop-IP`