ICS 451: Today's plan

- IP headers
- fragmentation
- IPv6 socket programming
- ICMP
 - ping
 - traceroute
<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Type of Service</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flags</th>
<th>Fragment Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time to Live</th>
<th>Protocol</th>
<th>Header Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th>Padding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPv6 header

<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Length</th>
<th>Next Header</th>
<th>Hop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
+--------------------------------+
| Source Address |
+----------------|
```

```
+--------------------------------+
| Destination Address |
+---------------------|
```

- or see wikipedia, IPv6, under packet format
IP fragmentation

- when a datagram is larger than the MTU of the outgoing interface, IP fragments it
 - in IPv6, only senders fragment, routers don't
 - routers can only fragment if the Don't Fragment (DF) flag is zero

- fragments are IP packets with IP headers
- each fragment carries the same ID
 - hopefully different from IDs of other datagrams that have the same source and destination
the destination needs to reassemble incoming fragments into a whole datagram

each fragment carries a fragment offset
- the place where the fragment's payload fits in the reassembled payload

e.g. fragment offset 144: this payload is to be placed beginning at byte offset 144 in the reassembled payload

offsets must be a multiple of 8 bytes
- and the 3 least significant bits are not sent
- so the offset field is 13 bits long
IP reassembly

- see if already reassembling for this (source, destination, packet ID)
 - if not, create an empty reassembled payload
- save the payload at the appropriate offset in the reassembled payload
 - need to keep track of where we have received data for the payload
- if the packet is complete, give to TCP/UDP
 - know size after receiving last fragment
 - identified by MoreFragments (MF) flag = 0
Ping of Death

- late 1980s
- someone sent an artificial fragment with
 - fragment offset + fragment size > 2^{16}
- some implementations copied packet into memory at given offset without checking
 - others overflowed 16-bit variables
- something important was after the buffer
- could crash systems from across the Internet!
 (didn't have to be a ping)
IPv6 fragmentation

- only done by senders, never by routers
- done in an extension header
- fragment extension header carries 13-bit fragment offset, 32-bit packet ID, and 1-bit More Fragments flag
IPv6 socket programming

- sockets are generic
 - not much change from IPv4
- AF_INET should be AF_INET6
- struct sockaddr_in should be struct sockaddr_in6
 - sin6_family, sin6_port, sin6_addr
 - sin6_flowinfo (new in IPv6)
 - sin6_scope_id (not used much)
ICMP

• Internet Control Message Protocol, 2 functions:
 – error reporting (never sent in response to ICMP error packets)
 – network debugging (ping)

• common errors packets include
 – destination unreachable (network, host, protocol, or port unreachable)
 – fragmentation needed
 – TTL expired (Time Exceeded)
 – redirect
 – parameter problem
ICMP error message format

- IP header, ICMP header, IP header of error packet, 64 bits (8 bytes) of IP payload of error packet
- ICMP header (8 bytes) has type (e.g. destination unreachable), code (e.g. host unreachable) and 4 or more bytes that vary depending on the type
Ping

- ICMP type ECHO, code 0
- ICMP type ECHO REPLY, code 0
- 4 extra bytes hold two bytes of ID (usually process ID) and two bytes of sequence number
- any additional bytes carry sender's time, in binary (usually 8 bytes)
 - when the packet returns, can compare time received (from system) with time sent (in packet)
Traceroute

- When a router drops a packet, it sends back a Time Exceeded in Transit ICMP error
- so if I send a packet with TTL 1, my router should send me an error
- TTL 2, the next router should send me an error
- ...
- the final host should send me port unreachable
 - sometimes blocked by firewalls
edo@uhx01 1 % traceroute -n www.ietf.org

traceroute to www.ietf.org (104.20.1.85), 30 hops max, 40 byte packets

1 128.171.24.193 0.345 ms 0.297 ms 0.186 ms
2 128.171.1.201 1.478 ms 1.127 ms 1.172 ms
3 128.171.64.190 1.085 ms 0.945 ms 1.008 ms
4 205.166.205.48 1.021 ms 0.863 ms 1.083 ms
5 74.202.119.9 1.541 ms 1.598 ms 14.653 ms
6 64.129.238.190 70.884 ms 52.823 ms 73.906 ms
7 * 4.68.71.137 54.391 ms 54.440 ms
8 4.69.144.138 54.595 ms 4.69.144.202 53.114 ms 4.69.144.74 52.828 ms
9 4.68.70.130 53.027 ms 58.414 ms 55.843 ms
10 62.115.32.214 84.881 ms 81.319 ms 81.322 ms
11 104.20.1.85 62.808 ms 62.954 ms 55.745 ms
Traceroute example, IPv6

$ traceroute6 -n www.ietf.org

traceroute to www.ietf.org
(2400:cb00:2048:1::6814:55), 30 hops max, 80 byte packets

1 2001:470:a:446::1 71.683 ms 73.466 ms 75.001 ms

2 2001:470:0:9b::1 85.305 ms 85.277 ms 85.256 ms

3 2001:504:16::3417 75.380 ms 75.373 ms 75.324 ms

4 2400:cb00:28:1024::6ca2:f46a 75.116 ms
2400:cb00:28:1024::6ca2:f415 75.430 ms
2400:cb00:28:1024::6ca2:f46a 75.243 ms
Path MTU discovery

- sender sends as big packets as its network MTU can support
 - if TCP MSS option is present in the SYN packets, sender will use the smaller of its own and its peer's MSS
 - TCP also sets the Don't Fragment (DF) bit
 - routers cannot fragment IPv6 packets
- router that cannot forward, sends destination unreachable, fragmentation needed
 - payload indicates MTU of interface
- next router may do the same again!
Deprecated ICMP messages

• source quench: send to a sender that is filling up a router's buffers
 – increases traffic during congestion
 – apparently not very effective
• redirect: on this same network, for this destination, use this other router
 – can be used for man-in-the-middle attacks
 – might still work on many systems (there are other ways to do MITM)