ICS 451: Today's plan

- Application Layer
- Domain Name System:
 - Domain Name Hierarchy
 - DNS Server Hierarchy
 - DNS Protocol
Application Layer

- Reminder: the Application Layer takes care of all the functionality NOT provided by the lower layers
 - Including security, sessions, login, multimedia...
 - The application layer also resolves **domain names** to IP addresses
Domain Names

- www.hawaii.edu
- www2.hawaii.edu
- www.rcuh.com
- www.ietf.org
- www.wikipedia.org
- www.hawaii.gov
- portal.ehawaii.gov
Domain Name Hierarchy

- Domain names are arranged hierarchically:
 - there is a small number of top-level domains (TLDs)
 - .edu .gov .org .com .arpa .us .ca .it .ch .jp .fr .uk..
 - below each TLD can be any number of unique domain names
 - hawaii.edu hawaii.gov hawaii.org hawaii.com...
 - the hierarchy can extend almost arbitrarily
 - www.ics.hawaii.edu

- the root of the hierarchy is just '.'
Domain Name Management

- The domain name space is divided into contiguous zones.
- Each zone is under a single management.
 - But one administrator can manage many zones.
- `hawaii.edu`, `botany.hawaii.edu`, and `www.botany.hawaii.edu` are in the same zone.
 - But `ics.hawaii.edu` and `www.ics.hawaii.edu` are in a different zone.
Domain Name Zones

- Each zone should have at least two servers.
- Each server must keep the IP addresses of:
 - every domain name in the zone
 - the servers for every sub-zone
- This way, every server can be reachable by starting from a root server.
Domain Name Resolution

- Domain Name resolution is the process of converting a domain name to an IP address
 - this can fail!
 - some domain names have no IP address
- Ask the root server
 - get the IP of the server on the next level down
- Ask the next level-down server
- until you get the translation if any
Types of DNS resolutions

- Alice asks Bob to tell her the IP for foo.org
- iterative: Bob tells Alice to ask Charlie
- recursive: Bob asks Charlie
 - and Donna and Eve, if necessary
 - then tells Alice whatever Charlie (Donna, or Eve) said
- It is up to each DNS server (that doesn't have the answer) to respond iteratively or recursively
 - the client can specify a preferred mode
DNS Resolvers

- A network may have a specialized server that handles DNS queries recursively
 - this is a *resolver*
- A resolver may also cache the results of popular queries, to decrease the number of queries that need to go out onto the Internet
DNS Caching

- The DNS protocol allows read-only access to DNS data
- Therefore, there is no concern with concurrent access to this distributed database
- Each resolution returns a TTL (Time To Live) for the information
 - clients and resolvers may cache the information for up to the TTL
 - e.g. 86400s (1 day), 7200s, 600s
DNS Protocol

- DNS has requests and replies (*queries* and *answers*)
- Each query is for a Resource Record (RR)
 - each answer is a RR
- Each message has a header followed by one or more RRs
- The message can be sent over UDP
 - or, with a length header, over TCP
DNS Message Structure

```
+-------------------+
| Header            |
+-------------------+
| Question          | the question for the name server
+-------------------+
| Answer            | RRs answering the question
+-------------------+
| Authority         | RRs pointing toward an authority
+-------------------+
| Additional        | RRs holding additional information
+-------------------+

• from RFC 1035
```
DNS Header

<table>
<thead>
<tr>
<th>QR</th>
<th>Opcode</th>
<th>AA</th>
<th>TC</th>
<th>RD</th>
<th>RA</th>
<th>Z</th>
<th>RCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QDCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Resource Record Structure

- **Name** (variable)
- **Type** (2 bytes)
- **Class** (2 bytes)
- **TTL** (4 bytes)
- **RD length** (2 bytes)
- **RData** (RDLength bytes)
Classes and Types

- Classes:
 - A (IPv4 address), AAAA (IPv6)
 - MX (mail server)
 - NS (name server)
 - CNAME (canonical name for an alias)
 - PTR (reverse lookup pointer)
- Only 1 Type: IN (1), the Internet
 - other types are obsolete
A DNS Lookup

- Query carries a Query Name, followed by a Type and a Class
 - e.g. www.hawaii.edu, A, IN
 - typically 1 query, and no other records

- Response has:
 - answers: CNAME web00.its.hawaii.edu
 - web00.its.hawaii.edu A 128.171.224.100
 - authority: hawaii.edu NS dns1.hawaii.edu
 - additional: dns1.hawaii.edu A 128.171.213.116
Encoding Names

- Domain Names are encoded as sequences of labels, each label up to 63 bytes long.
- Each label is 1 byte of length, then the name.
 - The root is a single byte of 0.
- Optimization: a label can be replaced by a 14-bit pointer preceded by two 1 bits.
 - The remaining 14 bits are an index into the message.
 - That is the beginning of another label.
Encoding Names – example

- **web00.its.hawaii.edu** appears as:
 - 5web003its6hawaii3edu0
- if the index of the 5 in the message is 45, and the 6 is at index 55 in the message
- **dns1.hawaii.edu** can be encoded as
 - 4dns1xC0 x37 (55 is x37)
- any further **web00.its.hawaii.edu** can be
 - xC0 x2D (45 is x2D)
- **www.hawaii.edu** is 3wwwwxC0 x37
Request and Reply IDs

- The requester generates a different ID for each request
- The server copies the ID field into the reply
- The requester ignores replies with different IDs

Security issue:
- if I can guess what you are going to query
- and I can guess your ID
- I can send you a spoofed reply