ICS 451: Today's plan

- Sliding Window Reliable Transmission
- Acknowledgements
- Windows and Bandwidth-Delay Product
- Retransmission
- Timers
- Connections
Alternating Bit Protocol: throughput tied to latency

• with the ABP, at most one packet can be sent at a time
 – then, the sender must wait for the ack
• if Round-Trip Time (RTT) is s seconds, and MTU is B bytes, maximum speed is B/s bytes/second
 – even on very high-speed networks
• If we can send multiple segments at once, we might get closer to the network throughput
Sliding Window

- With n-bit sequence numbers, 2^{n-1} segments could be in transit at any given time.
- The limit becomes the amount of buffer space at the receiver: sender should not send more than receiver can buffer.
- This buffer size is called the **send window**.
- When the receiver acks one more segment, sender can send one more segment.
 - as long as the send window size is the same
 - the window is *sliding* to greater seq numbers.
Types of Acknowledgement

- If packets are delivered in order, the receiver only acks (sends the sequence number of) the last received packet to acknowledge all preceding packets
 - this is a cumulative acknowledgement

- A receiver might get packets out of order, and save them to see if the earlier packets arrive
 - or are retransmitted

Then the receiver must ack individual packets
 - this is a selective acknowledgement
Acks and the Internet

- Every ack must carry a sequence number
 - of the packet it is acking
 - n bits long
- On the Internet, 32-bit sequence numbers
 - sequence numbers count bytes, not packets
- TCP acks are cumulative
 - TCP options also support selective acks
 - TCP options also support extensions to the 32-bit sequence numbers
Ack piggybacking

- TCP connections are bidirectional
 - data (as well as control) may flow in both directions
- so every TCP header carries a sequence number and an ack number
 - except the first TCP segment in a connection
- When data is carried, the ack is said to be *piggybacked* on the data
- A packet with no data is called an ack
Bandwidth-Delay Product

- Suppose a send window is B bytes
- and RTT is s seconds
- Then the sender can send at most one window per RTT, or B/s bytes per second
- If the window is 10,000B, and the RTT is 100ms, what is the maximum throughput? give the answer in bits/second
- Buying a faster network won't help!!!
- Need window \geq bandwidth \times delay product
Retransmission Strategies I

- Timeout must be > RTT
- Receiver discards packets received out of order
- On timeout, sender retransmits all the unacked segments
Retransmission Strategies II

- Timeout must be > RTT
- Receiver keeps packets received out of order
 - that are in the window
- On timeout, sender retransmits the oldest unacked segment
Retransmission Strategies III

- Timeout must be > RTT
- Receiver keeps packets received out of order
 - that are in the window
- When getting out-of-order packets, receiver sends selective acknowledgement
 - if packets are in order, sends cumulative ack
- Sender retransmits:
 - on selective ack, requested segment
 - on timeout, oldest unacked segment
Window Management

- Receiver must tell sender its window
- Control packets needed to carry acks
- Control packets also carry window information!
- Receiver may change window at any time
 - but preferably not discard any already-sent data
TCP adaptive timer

- TCP sends segments, waits for acks/timeouts
- On every ack, TCP knows how much time has passed since the segment was sent
 - except for retransmitted segments
- so TCP keeps track of the Round-Trip Time
- Timeout set to avg RTT + 4(variance in RTT)
- At start, timeout is set to 3seconds
TCP Connection Establishment

• The initial sequence number and window size on a TCP connection are not known to the peer
• So TCP sends a special control packet called a SYNchronization (SYN) packet
• A SYN is sent in each direction:
 – from the client to the server
 – then from the server to the client
• Each SYN is ACK'd
• The first ACK is piggybacked with the 2nd SYN
TCP Connection Establishment: 3-way handshake
Three-Way Handshake

- Initial Sequence numbers (ISNs) should be unpredictable
 - and non-repeating
- Each SYN packet must be acked
 - ack carries ISN+1
- SYN packets must be retransmitted on timeout
- At the end, both sides agree to have a connection, and on its window sizes
Three-Way Handshake: Connection Refused

- If the server does not have a socket listening on the desired port, it resets the connection
- It sends an RST packet to the client
 - same as a SYN, but setting a different bit in the header
- RST can be sent any time during a connection
 - e.g. after rebooting
Three-Way Handshake: Retransmission Scenarios

• Study *and understand* the retransmission scenarios in Section “Connection establishment and release” of the textbook, pp 84-86
Closing a connection

• Each side sends a FIN packet
 – each FIN packet must be acknowledged
• If Alice sends FIN to Bob, she is promising never to send any more data on the connection
 – but Bob can keep sending
• That's why `shutdown` allows “half-closed” connections