ICS 451: Today's plan

- Transport Layer
- Reliable Transfer
- Headers and Control Packets
- Alternating Bit Protocol
- Sliding Window Reliable Transmission
Transport Layer

• The transport layer provides end-to-end services to the application layer:
 – reliable transmission
 – of any size data
 – application (de)multiplexing

• The transport layer uses the end-to-end services of the network layer:
 – unreliable: packet loss, duplication, reordering, delay, corruption
 – maximum transmission unit (MTU)
Reliable Transmission

• reliable transmission must detect and correct:
 – packet corruption (bits flipped or lost)
 – packet loss
 – arbitrary packet delay
 – packet reordering and duplication

• How can you detect packet corruption?
Packet corruption

- Packet corruption can be detected by adding additional bits that say something about the packet contents.

- E.g. a parity bit:
 - If packet has even number of 1's, add 0
 - If packet has odd number of 1's, add 1

- Parity detects any single bit error
 - But may fail to detect multiple bit errors
Checksum

- packet corruption can be detected by adding additional bits that say something about the packet contents
- e.g. an additional byte that is the sum of all bytes modulo 256
 - if any one byte changes, we can detect it.
 - if any two bytes change, we can detect it with probability 255/256
- example: packet 0x11 0x22 0x33
 - with checksum: 0x99 0x11 0x22 0x33
 - sum is 0xff if the packet is correct
CRC

- packet corruption can be detected by adding additional bits that say something about the packet contents
 - e.g. the remainder when the packet is divided by a constant
 - if carefully designed, can detect and correct multiple errors
- designed to be implemented in hardware
 - part of Ethernet, WiFi
 - slower in software, so Internet uses checksum
Packet Loss

• packet loss can be due to corruption
 – if an incorrect packet is received, it is discarded
• packet loss can be due to buffers being full
 – if a packet is received, but there is no room in memory for it, the packet is discarded
• packet loss can be due to incorrect routing and other causes
Recovering from Packet Loss

- Transport layer recovers from packet loss by:
 - retransmitting packets

- The sender must know when to retransmit
 - receiver sends sender a special packet, an **ack**, to confirm that a data packet was received
 - so there are *data packets* and *control packets*

- The receiver must be able to distinguish retransmitted (and duplicate) packets from new packets
Packet Headers

- A single bit might distinguish a control packet from a data packet
- There is often other information to send with the data, e.g., port numbers
- This data is collected at the front of the packet, in a header
- The header often has a fixed format, as seen in DNS
Reliable Transmission: Alternating Bit Protocol

- Sender sends packet with sequence number 0
- Receiver sends ack(0), or nothing
 - if sender gets ack(0), sends packet(1)
 - if sender times out, resends packet(0)
- after getting ack(1), sender sends the third packet, again with sequence number 0

- Simplest protocol using sequence numbers
 - only works if network delivers packets in order
Alternating Bit Protocol:
out-of-order delivery

- Sender sends packet 1 with sequence 0
- Sender times out and retransmits
- Receiver acks sequence 0
- Sender sends packet 2 with sequence 1
- Receiver acks sequence 1
- Sender sends packet 3 with sequence 0
- Network delivers original packet 1 with seq 0
- Receiver cannot distinguish 1 from 3!
Multiple-bit Sequence Numbers

- Receiver cannot distinguish 1 from 3 because they have the same sequence number
 - solution: have more than 2 sequence numbers
 - e.g. 2^n sequence numbers
 - and specify a maximum segment lifetime (MSL)
 - e.g. 2 minutes on the Internet
- then, as long as we use less than $2^n/2$ (2^{n-1}) segments/MSL, there is no danger of confusion
Alternating Bit Protocol: throughput tied to latency

- with the ABP, at most one packet can be sent at a time
 - then, the sender must wait for the ack
- if Round-Trip Time (RTT) is s seconds, and MTU is B bytes, maximum speed is B/s bytes/second
 - even on very high-speed networks
- If we can send multiple segments at once, we might get closer to the network throughput
Sliding Window

- With n-bit sequence numbers, 2^{n-1} segments could be in transit at any given time.
- The limit becomes the amount of buffer space at the receiver: sender should not send more than receiver can buffer.
- This buffer size is called the **send window**.
- When the receiver acks one more segment, sender can send one more segment:
 - as long as the send window size is the same,
 - the window is *sliding* to greater seq numbers.
Types of Acknowledgement

• If packets are delivered in order, the receiver only acks (sends the sequence number of) the last received packet to acknowledge all preceding packets
 – this is a cumulative acknowledgement

• A receiver might get packets out of order, and save them to see if the earlier packets arrive
 – or are retransmitted
Then the receiver must ack individual packets
 – this is a selective acknowledgement
Acks and the Internet

- Every ack must carry a sequence number
 - of the packet it is acking
 - n bits long
- On the Internet, 32-bit sequence numbers
 - sequence numbers count bytes, not packets
- TCP acks are cumulative
 - TCP options also support selective acks
 - TCP options also support extensions to the 32-bit sequence numbers
Ack piggybacking

- TCP connections are bidirectional
 - data (as well as control) may flow in both directions
- so every TCP header carries a sequence number and an ack number
 - except the first TCP segment in a connection
- When data is carried, the ack is said to be piggybacked on the data
- A packet with no data is called an ack
Bandwidth-Delay Product

• Suppose a send window is B bytes
• and RTT is s seconds
• Then the sender can send at most one window per RTT, or B/s bytes per second
• If the window is 10,000B, and the RTT is 100ms, what is the maximum throughput? give the answer in bits/second
• Buying a faster network won't help!!!