ICS 351: Today's plan

- TCP and UDP
- port numbers
- congestion control
TCP and UDP

- Layered above IP (header follows IP header)
- Provide another layer of addressing: port numbers, which let us identify applications (sockets) within hosts
- UDP (RFC 768) does not provide much else:

```plaintext
+-------------------+-------------------+-------------------+-------------------+
| Source Port       | Destination Port  |
+-------------------+-------------------+-------------------+-------------------+
| Length            | Checksum          |
+-------------------+-------------------+-------------------+-------------------+
```

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
```
TCP Header

- RFC 793 and RFC 1122

```
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | | | | |
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Source Port | Destination Port |
+---+
| Sequence Number |
+---+
| Acknowledgment Number |
+---+
Data	C	E	U	A	P	R	S	F		
Offset	Resrved	W	C	R	C	S	S	Y	I	Window
	R	E	G	K	H	T	N	N		
+---+										
Checksum	Urgent Pointer									
+---+										
Options	Padding									
+---+										
data										
+---+
```
TCP Behavior

- TCP control bits (SYN, FIN, ACK, RST) help maintain TCP connections.
- Three-way handshake is SYN, with SYN-ACK in answer, and a final ACK to confirm receipt of the second packet.
- 32-bit sequence number, ack number count bytes rather than packets.
- An ack is sent, almost for free (piggyback) in every packet except the first.
TCP Window

- window tells the recipient how many more bytes (past the ack) the sender of this packet is willing to receive -- flow control, slowing down the sender to avoid overwhelming a slow receiver
- this is the flow control window
- setting the window to zero forces the sender to stop
- in general, TCP can send one window every RTT (round-trip time)
port numbers

- an IP address identifies an interface, and by extension a machine
- a port number identifies an application within a machine
- servers *listen* on specific, *well-known* ports
- each local port can be used for multiple *sockets*, as long as (at least) one of these is different: local/remote IP, local/remote port, protocol

**note:**
- a socket has a **local** and a **remote** port (and IP addresses)
- a packet has a **source** and a **destination** port (and IP addresses)

local and remote make sense on a host

source and destination make sense for a packet
Congestion Collapse

- reminder: the network hardware might be working fine, but if the software fails, the network goes down
- e.g. if the routing tables include loops, packets will not get delivered
- imagine a retransmission mechanism where, when a packet is lost, I resend the lost packet and also a new one
- if a packet is lost due to congestion, the first little congestion experienced will likely lead to more congestion
- this happened a couple of times in the 1970's -- the network hardware was working fine, but almost no data would get through
TCP Congestion Control

- to control congestion, TCP slows down substantially (half the speed) when packets are lost.
- TCP then slowly speeds up its transmission rate when no packets are lost.
- this is controlled by a window that (unlike the flow control window above) is maintained on each sender, and never communicated: the congestion window.
- the effective window is the smaller of the flow control window and the congestion window.
TCP Congestion Control: details

- when packets are lost, the congestion window shrinks to about half its previous size
  - actually it shrinks to one packet (one Maximum Segment Size)
  - then grows exponentially to half the previous window
- every RTT when no packets are lost, the congestion window grows by one packet (one MSS)
- since each TCP can send one window every RTT, shrinking the window slows down sending
- TCP also has other mechanisms to lessen congestion:
  - binary exponential backoff on retransmissions
  - adaptive timers to more reliably detect packet loss