ICS 351: Today's plan

- Wireless ad-hoc Networks
- Wireless Sensor Networks
Wireless Ad-hoc Networks

- Mobile computers: laptops (and everything else), vehicle-mounted computers, etc.
- Fields of sensors, including building monitoring, bridge monitoring, environmental monitoring
- Radios with low power and short range: 802.11/Wifi (< 150m), 802.15.4/Zigbee (< 50m), Bluetooth (< 10m)
- Ad-hoc networking: every computer can relay data for others
Some Applications of Wireless Ad-Hoc Networks

- Sensor Networks:
 - agriculture
 - science and ecology
- Emergency Communications (P2P)
- Vehicle Ad-hoc Networks (VANETs):
 - Vehicle-to-vehicle
 - Vehicle-to-infrastructure
 - Infra-Vehicle (within a vehicle)
Wireless Ad-hoc Networks: More Applications

- Monitoring of wide areas, buildings, dangerous locations, long-term unintrusive monitoring, etc.
- Robots for rescuing people in damaged buildings
- Communication among individuals at a conference, classroom etc.
- Environmental controls for buildings
Ad-hoc Network Research Issues

- Routing: minimal overhead, any-to-any or any-to-sink routing
- Broadcasting/Flooding
- Security
- Initialization and Configuration
- Reliable transmission
Wireless Ad-hoc Networks: Routing and Broadcasting

• The sink collects data from other nodes
• The sink can broadcast an initial message
• Everyone in range of the sink retransmits it, increasing the distance field in the header
 - Everyone at distance 2 retransmits the packet
 - then everyone at distance 3
 - and so on
• At the end, everyone knows:
 - Their distance to the sink
 - The next hop node to use to reach the sink
• But flooding can lead to mutual interference
Wireless Ad-hoc Networks: Security

- Monitoring networks can be used to detect forest fires or enemy attack
- An adversary (or a prankster) might wish to send a *false positive* signal
- Or a false negative, suppressing a real alarm
- It is likely that the adversary will obtain access to one or more nodes
- What should be protected?
- Which node(s) can or should be trusted?
Wireless Ad-hoc Networks: Reliable Transmission

• Assume a number of nodes in a straight line
• Each node is only in range of two other nodes
• When the second node receives a packet, it must retransmit it, but this may interfere with the second packet transmitted by the first node
• So, transmit in blocks, use acks to confirm
• Hardware acks acknowledge reception by the hardware, but packet may still be discarded due to lack of buffer space
 – so transmission is not reliable
Wireless Ad-hoc Networks: Reliable Transmission

- Assume a number of nodes in a straight line
- Each node is only in range of two other nodes
- When the second node receives a packet, it must retransmit it, but this may interfere with the second packet transmitted by the first node
- So, transmit in blocks, use acks to confirm
- Hardware acks acknowledge reception by the hardware, but packet may still be discarded due to lack of buffer space
 - so transmission is not reliable