ICS 351: Today's plan

- web scripting languages
- HTTPS: SSL and TLS
- certificates
- cookies
- DNS reminder
web scripting languages

- web content described by HTML was originally static, corresponding to files on the server
- since the server is a program, it can generate content that is generated dynamically, e.g. put the user's name (or bank balance) within the web page
- however, this requires the server administrator to modify the code of the server, which is error-prone
web scripting languages

- rather than modifying the server, the server program can execute a server-side script to generate new content to be served
- this script can be written in any language supported by the system on which the server is running
client-side scripts

- even with a server-side script, each change in the web page requires an HTTP request and reply, and requires that the page be rendered again
- and usually requires an explicit user action such as a mouse click
- to have more interactivity, many browsers have been designed to execute client-side scripts that can modify the displayed page and exchange data over the internet
- client-side scripts are in Java or Javascript
client-side scripts and security

- while client-side scripts do much to improve the appearance of pages, there can be concerns about security and reliability
- client-side scripts let servers execute code on a client – how does the client know what the code will do? can the client trust the server?
- in an attempt to address these concerns, browsers limit what scripts are allowed to do
- not all browsers execute client-side scripts
server-side scripts and security

- bugs in a server-side script can be exploited by attackers
- server-side scripts that do not thoroughly check their input are vulnerable, e.g. to SQL injection attacks

 http://xkcd.com/327/

- a server-side script lets the client execute code on the server
- the server controls what scripts are available, but not what the clients will do with the scripts
secure HTTP

- HTTP by itself is very insecure: any man-in-the-middle attacker can observe all the content sent and received
- some people wish to use HTTP to send sensitive data, e.g. credit card numbers, personal email
- instead of layering HTTP over TCP, HTTP can be layered over a secure protocol that runs over TCP
- the choice of secure protocols for HTTPS (secure HTTP) is SSL (older) or TLS (newer)
- both SSL and TLS are considered secure, but
- SSL and TLS authentication requires a public key for the server
- how to connect to a server that has not been visited before?
certificates

- a certificate is a digital signature by entity CA verifying that the enclosed public key authenticates server S
- there are a few (~100) certificate authorities (CAs) that are widely known and recognized by many web browsers
- when presenting its public key, a server S also presents the certificate signed by a CA as evidence that S indeed is the server the user wants to talk with
certificate vulnerabilities

- certificates protect against man-in-the-middle attack (including DNS attacks), but are still vulnerable to misspellings (e.g. goggle.com)
- if the certificate authority is compromised, and DNS or the routing infrastructure subverted, an attacker can impersonate any website
- this may have happened – the dutch CA diginotar may have had its keys stolen and misused
self-signed certificates

- if I have a website for private use, I don’t need a certificate from a CA
- I can use a *self-signed* certificate instead
- as before, the crucial step is giving the browser the correct public key for the desired server
- this requires hand-configuration of all the browsers that will use this server
HTTP cookies

- HTTP is a stateless protocol: a server has no real way to identify a client, so a request may or may not be connected with prior requests
- instead, a server may offer a client a cookie, a small amount of data that is only meaningful to the server
- on subsequent related requests to the same server, the client will send back the cookie, to confirm that the requests are connected
- cookies have an expiration time -- most cookies used for authentication expire quickly
HTTP cookies

- cookies can also be used to attempt to track users as they visit multiple sites, by embedding in the several sites a small image (or other content) served from the same server
- these cookies are often long-lived
- similar tracking can be done by tracking accesses based on the IP number of the connecting client
Cookie Persistence

HTTP/1.1 200 OK
Date: Sun, 06 Apr 2014 01:22:44 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=ef4f230aa811ea46:FF=0:TM=1396747364:LM=1396747364:S=MKk0H_sL4n4ASDWT; expires=Tue, 05-Apr-2016 01:22:44 GMT; path=/; domain=.google.com
Set-Cookie: NID=67=JDP6w2jg7bqqHpoM0D6MNfqUwjihuH7YDQ_oGL3J-xt93-BLfL4xjxBEN-aTJNwX4nx6cRd9oVyt1HrPB1xYzmeaWh3VHW3clsVNEIBjT2RA1h8mdWYQxcQr10-Nqnez; expires=Mon, 06-Oct-2014 01:22:44 GMT; path=/; domain=.google.com; HttpOnly
P3P: CP="This is not a P3P policy! See http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=151657 for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Connection: close
DNS reminder

- DNS provides name to IP address resolution
- Domain names are grouped into zones
- A DNS server provides translation (resolution) for the names in one zone
- A DNS query contains question Resource Records
- A DNS response may contain answer RRs, name server RRss, and additional RRss
dig hawaii.edu

;; QUESTION SECTION:

; hawaii.edu. IN A

;; ANSWER SECTION:

hawaii.edu. 1800IN A 128.171.224.100

;; AUTHORITY SECTION:

hawaii.edu. 1800IN NS dns4.hawaii.edu.
hawaii.edu. 1800IN NS dns2.hawaii.edu.
hawaii.edu. 1800IN NS dns1.hawaii.edu.

;; ADDITIONAL SECTION:

dns1.hawaii.edu. 1800IN A 128.171.3.13
dns1.hawaii.edu. 1800IN A 128.171.1.1
dns2.hawaii.edu. 1800IN A 128.171.3.13
dns2.hawaii.edu. 1800IN A 128.171.1.1
dns4.hawaii.edu. 1800IN A 130.253.102.4
dig mx hawaii.edu

;; QUESTION SECTION:
;hawaii.edu. IN MX

;; ANSWER SECTION:
hawaii.edu. 1800IN MX 10 mx1.hawaii.edu.

;; AUTHORITY SECTION:
hawaii.edu. 1800IN NS dns1.hawaii.edu.
hawaii.edu. 1800IN NS dns4.hawaii.edu.
hawaii.edu. 1800IN NS dns2.hawaii.edu.
suppose a system administrator has to manage a large number of machines

for example, three web servers, a DHCP server, a backup server, a Network Attached Storage (NAS) server, a mail server, and a few printers

a large KVM might be useful, but also has limitations:
- all the servers must be in close physical proximity
- there cannot be multiple, remote consoles
- there is no way to get alerts from systems that need attention
Simple Network Management Protocol

- SNMP uses the network to report status information and alerts about remote systems
- SNMP messages are carried over UDP
- Values can be loaded on demand (pull model), but when needed and configured appropriately, alerts are sent independently by the systems being managed (push)
SNMP
Management Information Base

- SNMP needs a machine-independent way to indicate which item of information is being requested or sent
- Logically, the entire universe of information that can be accessed is built into a large tree: the Management Information Base or MIB
- The tree is extensible so individuals and organization can add their own subtrees -- private MIBs
- The tree is universal and known to all
navigating the MIB

• the path through the tree is sufficient to indicate one specific item (corresponding to a variable in a programming language)

• the path through the tree can be indicated by a sequence of numbers, the number of left siblings of the path being taken

• for example, 0.2.7.5.14.1.7.0 is such an Object Identifier (OID)

• OIDs are useful for enumerating arrays of objects, e.g., network interfaces, routing table entries
SNMP programs

- a network management station is used by the system administrator to monitor multiple systems
- a management agent must run on every managed device, get the required information, and provide it on request
SNMP basic operation

- the network management station may send GET requests to get one or more objects from specific agents
- the network management station may also send SET requests to modify one or more objects on specific agents
- agents will send TRAP or INFORM alerts to network management stations that they have been configured to alert
- because it uses UDP, SNMP (like DNS) cannot assume that its operations will be successful.