AllNet: Ubiquitous Interpersonal Communication

Edoardo Biagioni
University of Hawaii at Mānoa

esb@hawaii.edu
Basic Idea

- The radio in my cellphone can talk to the radio in your cellphone
- There is no software in my cellphone to talk to the software in your cellphone
- Why not?
- What can such ad-hoc communication be useful for?
Observations

• Useful interpersonal communication do not require much bandwidth
 – Ubiquitous connectivity from 1% each
 – Twitter and SMS are extremely useful
 • Despite being limited to 140 characters

• Phones are actually computers

• Any centralized system has a central point of failure

=> distributed system to deliver small amounts of data (text messages)
Outline

- Introduction and Motivation
- **Basic Design**
- Forwarding and Routing
- Social Network
- Resource Control
- Architecture
- Status and Summary
Basic Design of AllNet

- Designed to work well with few bits and few round-trips
- Untrusted network components require pervasive encryption
- Broadcasting is a backup to Routing
 - And maybe better in transient networks
- Message prioritization solves many ills
Low bandwidth communication

- Short text messages
- Sent best-effort over UDP, WiFi, other technologies (cognitive), and Internet
- Stored permanently at sender
- Stored at intermediate nodes until acked or displaced by higher-priority messages
Security Assumptions

- My device is under my control
- Public-Key cryptography is secure
- Verifying signatures is fast

- Security should work in a high-school classroom
 - must be simple and effective
Romeo meets Juliet

I love you! How can we talk?
Come to my balcony, my love
Do you have AllNet?
Yes! Use "vfjbxu" to exchange keys

one-time secret: VFJBXU

public key, hmac(public key)/secret
Encryption and Authentication

• Messages between individuals who know each other's public key are:
 – Encrypted (RSA, + AES for long msgs)
 – Then digitally signed
• I only decrypt if I can verify the signature
• Everything else is “from unknown”/spam
Secure Acknowledgements

- Encrypted payload has bytes of ack
- Only a recipient that can decrypt the payload can generate a valid ack
Message Caching

- Intermediate nodes keep message until ack is seen
- Or until they need to reuse the space
- Recipient can request cached messages
 - Lets recipient be online intermittently
 - Data Mules work like intermediate nodes
xchat

- Distributed chat over AllNet
- Key exchange
- Exchange of encrypted messages
 - Sequence numbers and timestamps
 - Same seq, newer time is correction
- Pidgin (http://pidgin.im/) as user interface
Message Delivery

- Across the Internet
 - To Rendezvous Points, if known
 - To Distributed Hash Table nodes
 - Directly to destination, if possible
- Broadcast on all attached LANs
- Hop count limits distribution
- Low hop limit gives higher priority
Addressing and Routing

- Addresses are self-selected 64-bit strings
 - e.g. the hash of “edo using AllNet”
 - can use fewer than 64 bits
- Addresses identify parts of the network:
 - Distributed Hash Table (DHT)
 - Configured Rendezvous Points (Rps)
 - Nodes that will try to verify and decrypt
- Routing uses broadcast locally
 - On LANs+ for Delay Tolerant Networking
Related work: BitMessage

- In principle, every message broadcast to every node
- Every message kept for two days
- If too many messages, messages are stored on only part of the network
- Recipients know which part of the network has their messages
AllNet Routing Considerations

- When traffic is low, OK to forward everything everywhere
- When traffic is high, only forward high priority messages
- With prioritization, limited broadcast OK
- Pure broadcast lessens the effectiveness of traffic analysis
Outline

- Introduction and Motivation
- Basic Design
- Forwarding and Routing
- Social Network
- Resource Control
- Architecture
- Status and Summary
Distributed Social Network

- I can give you my friends' public keys
- If they match yours, we have friends in common
- You can introduce me to your friends
 - Messages won't go to the spam box
- You can recognize my friends' messages
 - and give them higher priority
Related Work:
Getting people to contribute
Desiato and Biagioni, 2013/2014

- Make it automatic and painless
 - Limit resource consumption (1% goal)
- People motivated by intrinsic desire to help as well as external rewards
 - Community building
 - More bandwidth when they need it
 - Prizes, certificates, fame
Outline

- Introduction and Motivation
- Basic Design
- Forwarding and Routing
- Social Network
- Resource Control
- Architecture
- Status and Summary
1% WiFi usage

- WiFi in ad-hoc mode (no access point)
- Off most of the time, on to send/receive
 - beacon announces receiver availability
- Senders must be awake for a receiver cycle to detect beacon
- Sender knows priority of own messages
- Sender sleep cycle determines latency
1% WiFi ad-hoc usage: Example

- Receiver awake for 0.1 seconds
 - must sleep for 9.9 seconds
- Senders must be awake 10 seconds
 - sleep for 1000 seconds
 => Latency ~20min/hop for messages from unknown senders
- Much faster for messages from known senders
Outline

• Introduction and Motivation
• Basic Design
• Forwarding and Routing
• Social Network
• Resource Control
• Architecture
• Status and Summary
Requirements Overview

- AllNet has to do many things
- Many of these are done in parallel:
 - Send on different interfaces
 - Send to different applications
- Many are independent of each other
- Hard to keep track of what to do
 - So, do it independently!
Architecture

• A collection of different processes, each doing something different
 - ad, the main AllNet Daemon (350 loc)
 - abc, broadcast on local interfaces (2K)
 - aip, send using IP (1K)
 - alocal, send to the local apps (200 loc)
 - acache, remember messages (1K)

• The processes communicate over pipes
Collections of Processes: Pros and Cons

- Easier to understand each part
 - Easier to debug, and fewer bugs
- More secure
- Probably slower
- Have to start and kill multiple processes
- Only easy to do what fits the model
Outline

- Introduction and Motivation
- Basic Design
- Forwarding and Routing
- Social Network
- Resource Control
- Status and Summary
AllNet Status

- Version 3 released, tested
 - xchat application with custom GUI
 - time broadcast server
 - key exchange and security
 - Ping, trace, packet sniffer
- under development
 - Ports to Android, iOS
 - Voice streaming, other multimedia
Summary

- Key exchange is less difficult with portable wireless devices => easier security
- Conventional addresses not very good for mobile devices – some broadcasting required
- Basic connectivity need not require big expensive resources

http://www.alnt.org/
Usage Scenario I

- Internet-connected host with public IP address
- Contributes to DHT, stores others' data
- Immediate delivery of data from other DHT nodes that it listens to
- May give senders its IP address for direct delivery
Usage Scenario II

- Mobile Device intermittently connected to Internet
- Carries data (Data Mule) and forwards it based on priority
- Tries to deliver data over ad-hoc network
- May use others to deliver its data
Usage Scenario III

- Group separated from the Internet
- Supports communication within the group
- High data rates supported with direct communication
- May use ad-hoc communication over unrelated devices