
3/30/10

1

Intro	 to	 PHP	

2	

What Is PHP
•  PHP

–  Personal Home Page -> PHP: Hypertext Preprocessor
–  1994 Rasmus Lerdorf

•  Server-side scripting language
–  interpreted
–  weekly-typed (values have types, not variables)
–  strong in text-processing (+ regular expressions)

•  www.php.net/
–  release 5.3.2

3	

Why PHP?

•  Widely popular
– available at most web-hosting services
– most popular server-side scripting language

•  C heritage
–  like Java, JavaScript, Perl

•  Open source
= free

4	

How Does It Work?
•  A web page contains PHP and XHTML

–  intertwined

1. Client (=browser) requests a page
2. PHP scripts are executed on the server
3. They create XHTML markup
4. Resulting page is send to the client
5. Browser displays the page

•  Result = dynamic web site
–  content depends on the PHP script
–  e.g., may vary depending on a database query

5	

Hello PHP World
•  Server-side page:

<!DOCTYPE ……>
<html ……><head>
 <title>ICS PHP Hi</title>
</head><body>
 <?php
 echo "<h1>PHP Hi</h1>
 <p>Hi from HI</p>";
 ?>
</body></html>

•  Sent to client as:
<!DOCTYPE ……>
<html ………><head>
 <title>ICS PHP Hi</title>
</head><body>
 <h1>PHP Hi</h1>
 <p>Hi from HI</p>
</body></html>

6	

Syntax

•  <?php
 //some php script
?>
–  or (discouraged):

•  <? instead of <?php

•  Can be anywhere on the page
–  typically functions are in page's <head>

•  PHP scripts can be in separate files
–  e.g., for object classes
–  then, no <?php …… ?>

3/30/10

2

7	

How To Code PHP?
•  I recommend (on PC)

–  Eclipse with PHP
•  www.eclipse.org/pdt/

–  runs out of the box
•  no need to worry about server, etc.

–  but must learn Eclipse
•  but that's good anyway

•  on Mac, Unix?
–  any text editor
–  web server needed

•  at UH
–  special web site needed
–  restricted, lots of paperwork

8	

Basics

•  echo string
–  or

•  print string
–  insert string into XHTML markup

•  comments
–  line comments start with // or #

•  till end of the line, e.g.,
•  # copyright 2010 ICS
•  echo "
"; //display new line

–  multiline comments are enclosed in /* and */, e.g.,
•  /* ICS
 = Insider-Created Scripts */

9	

Comments
•  # comments

–  customary in headings
–  copyright notices, etc.
–  don't use them within code they distract

•  // comments
–  used throughout code
–  comment what comes next on separate lines
–  leave lines empty to structure code is laziness

•  /* … */ comments
–  typically used for debugging purposes

•  to comment out code temporarily
•  to comment out debugging code in final product

•  Comment, comment, comment!
•  But avoid outdated comment!

10	

Strings
•  delimited by " or '

–  " and ' are similar
–  but different with variables – see later

•  can stretch over several lines, e.g.,
–  " line 1

 line 2"
•  characters can be escaped with \

–  e.g., 'I didn\'t PHP'
–  e.g., "Say \" Now I do\" now!"
–  also , \$, \\ etc. may be needed

•  special characters
–  \n new line, \t tab, \r carriage return, ...

•  while PHP does insert white space, XHTML typically ignores it

11	

String Operations
•  Concatenation with .

–  e.g., "ICS" . " " . "is" . " " . "fun"

•  Functions
–  strlen(string)
–  empty(string)
–  substr(string,from,length)
–  strpos(string,pattern,from)

•  returns index of first pattern in string starting at optional from

–  explode(delimiter,string)
•  returns array (without delimiters)

–  implode(delimiter,array)
•  returns string with array elements concatenated with delimiters

–  etc., etc.

12	

Numbers

•  Syntax
–  as usual: 3.14, -0.5e-5, …

•  Operators
–  +, -, *, / as usual
–  % modulo, ++ +1, -- -1

•  Functions
•  round(number)
•  round(number,decimals)
•  number_format(number,decimals)

3/30/10

3

13	

Variables
•  Syntax

–  must start with $, e.g.,
•  $cookieCount

–  followed by a letter or _
–  then any letters, digits or _
–  case-sensitive
–  use "camel notation"

•  Variables don't need to be declared
–  just assign them using =

•  Variables don't have types
–  the values they were assigned have types

•  Variable in a "…" string will be replaced by its value
–  $hi = '"Hi!"';

echo "I said $hi"; //= 'I said "Hi!"'

–  Watch out: no replacement in a '…' string!
•  $hi = '"Hi!"';

echo 'I said $hi'; //= 'I said $hi'

14	

Statements
•  Statements end with ;

–  except when they use the{…} form

•  Assignment
–  uses =

•  test for equality is ==

•  Operator-assignment is convenient
–  e.g., $index += 2; //is $index = $index + 2
–  e.g., $name .= ","; //is $name = $name . ","
–  in general: var op= exp;

•  is the same as: var = var op exp;

15	

Constants
•  Syntax

–  first character letter or _, then any letters, digits or _
–  no $!
–  if you use all caps, use _ to separate words

•  Defined with
–  define(name,value);
–  e.g., define(PI,3.14);

•  To print a constant, concatenate
–  echo "pi=" . PI; // "pi=PI" won't work

•  I personally find all caps distracting
–  what's so special about a constant to make it stand out?

16	

HTML Forms
•  Allow user interaction

–  <form action="response.php" method="post">
•  action is the URL of page that handles the form

•  Contain widgets
–  text fields

•  <input type="text" name="…">
•  <textarea name="" rows="…" cols="…">

–  pull-down menus
•  <select name="…">

 <option value="…">choice-1</option>
 <option value="…">choice-2</option>
</select>

–  radio buttons
•  <input type="radio" name="…" value="…">
•  use same name for radio buttons in a group

–  check boxes
•  <input type="checkbox" name="…" value="…">

–  submit button
•  <input type="submit" name="…" value="Submit">

–  (reset button – don't use!)
–  name can be referenced by PHP
–  value initial value, label

17	

PHP & HTML Forms
•  PHP page that handles a form accesses widgets' value

directly
•  Special "superglobal" variable $_REQUEST

–  "associative array", i.e., array with string indices
–  indices are the name attributes of the widgets
–  e.g.,

•  the text in the field <input type="text" name="age">
•  is in $_REQUEST['age']

–  watch out: indices are case-sensitive

18	

Forms Example
•  When user fills the form in this page and clicks "Submit"

•  <html>…<body>…
 <form action="response.php" method="post">
 <input type="text" name="age">
 <input type="radio" name="gender" value="male">
 <input type="radio" name="gender" value="female">
 <input type="submit" value="Submit">
 </form>
</body></html>

•  Page response.php can access the widgets' values
•  <html>…<body>…

 <?php
 $age = $_REQUEST['age'];
 $gender = $_REQUEST['gender'];
 echo "<p>You are a $age years old $gender </p>";
 ?>
</body></html>

3/30/10

4

19	

Branches
•  if (condition1) {……

} else if (condition2) {……
} else {……
}
–  else if and else are optional

•  elsif is also supported

–  e.g.,
•  if ($gender == "female") {

 echo "Dear Madame,";
} else if ($gender == "male") {
 echo "Dear Sir,";
} else {
 echo "You forgot to choose the gender.";
}

–  indent nested block(s)
•  switch as in Java

–  ugly because of break in each branch

20	

Loops
•  while (condition) {

 ……
}

•  for(init-statement;condition;iteration-statement){
 ……
}
–  as in Java

•  loops while condition it true
•  init-statement executed once before block
•  iteration-statement executed always after block
•  can also use break; or continue;

–  again, indent nested block(s)
–  e.g.,

•  for ($i = 0; i < strlen ($text); $i++) {
 $ch = $text[$i];
 echo "$i-th char is '$ch'
";
}

21	

Conditions
•  false

–  0, "", FALSE, NULL

•  everything else is true
•  isset($var) is true iff $var is not NULL

–  useful for form values

•  typical relational operators
–  ==, !=, <, >, <=, >=, &&, ||, XOR
–  ! unary not

22	

Validation
•  Testing whether a variable has a value

–  if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];
} else {
 $gender = NULL;
}

•  Testing whether text variable has a value
–  if (empty($_REQUEST['age'])) {

 $age = NULL;
} else {
 $age = $_REQUEST['age'];
}

•  Testing whether text variable has a value
–  if (is_numeric($_REQUEST['age'])) {

 $age = $_REQUEST['age'];
} else {
 $age = NULL;
}

23	

Arrays
•  indexed

–  integer index starting with 0, e.g., $days[0]
•  associative

–  string index, e.g., $months['may']
–  to print, use {} braces: echo "1-st of {$months['may']}";

•  creating arrays
–  explicitly using array()

•  e.g., $days = array('mo','tu','we'); //$days[0] is 'mo', etc.
•  e.g., $days = array('jan'=>31,'feb'=>28,'mar'=>31);//$days['feb'] is 28
•  with start index, e.g., $months = array(1=>'jan','feb','mar'); //$months[1] is 'jan'

–  assigning subsequent elements
•  e.g., $days[] = 'mo'; $days[] = 'tu';

–  by assigning with indices
•  e.g., $days['jan'] = 31; $days['feb'] = 28;

–  with range(from,to)
•  e.g., $nos = range(1,7); //$nos[0] is 1 … $nos[6] is 7

24	

Arrays (cont.)
•  String is an array of characters

–  e.g., echo "last letter is {$text[strlen($text) - 1]}"

•  foreach loop
–  iterates through array elements, e.g.,

•  foreach ($array as $element) {
 echo "$element,";
}

•  foreach ($array as $index => $element) {
 echo "\$array[$index] = $element
";
}

•  Arrays can be sorted
–  sort($array)

•  sorts by value, discards the indices

–  asort($array)
•  sorts by value, maintains the indices

–  ksort($array)
•  sorts by indices

3/30/10

5

25	

Multidimensional Arrays
•  Multidimensional array is an array of arrays
•  Subarrays can have different lengths
•  Indexed and associative arrays can be mixed

•  e.g.,
–  $usa = array('HI'=>'Hawaii','IA'=>'Iowa','ID'=>'Idaho');

$canada = ('QC'=>'Quebec','YT'=>'Yukon');
$countries = array('USA'=>$usa,'Canada'=>$canada);
foreach ($countries as $country => $states) {
 foreach ($states as $code => $state) {
 echo "$code stands for $state in $country"
 }
}

26	

Form Values As Arrays
•  Some values of form widgets are accessed as an array
•  Checkboxes with the same name attribute

•  <input type="checkbox" name="courses[]" value="215">
<input type="checkbox" name="courses[]" value="315">

–  are accessed as multidimensional array
•  foreach ($_REQUEST['courses'] as $course) {

 echo "You choose ICS $course
"
}

–  only the checked boxes are in the array
•  Drop-down menus with multiple selections

•  <select name="courses[]" multiple="multiple">
 <option value="215">ICS 215</option>
 <option value="315">ICS 315</option>
 </select>

–  are accessed the same way
–  only the selected menu items are in the array

