LUPUS ERYTHEMATOSUS AND NUTRITION:
A REVIEW OF THE LITERATURE

Author:
© 2004 Amy C. Brown, PhD, RD
Department of Human Nutrition, Food, & Animal Sciences
University of Hawaii @ Manoa
1955 East-West Road, Rm 216
Honolulu, HI 96822

808/956-3846 ♦ 808/956-4883 (fax)
amybrown@hawaii.edu
Lupus Erythematosus and Nutrition: A Review of the Literature
Amy C. Brown, PhD, RD

The purpose of this paper was to search the scientific literature for dietary compounds that alleviate or exacerbate symptoms of lupus erythematosus (LE) in both animal and human models. A detailed literature review was undertaken to find articles showing a relationship between LE and nutrition by using MEDLINE/INDEX MEDICUS (1950 - March 2000) for English-language articles, followed by cross-referencing. Aggravating substances appear to include excess calories, excess protein, high fat (especially saturated and omega-6 polyunsaturated fatty acids), zinc, iron, and L-canavanine found in alfalfa tablets. Possible beneficial dietary compounds include vitamin E, vitamin A (beta-carotene), selenium, fish oils (omega-3 polyunsaturated fatty acids), evening primrose oil, flaxseed, a plant herb (Tripterygium wilfordii), DHEA (dehydroepiandrosterone), and calcium plus vitamin D (if taking corticosteroids). Some people with systemic LE placed on food allergy elimination diets reported improvement in their LE symptoms, however, this may be related to a decrease of other substances in the diet. Also, although no direct evidence was reported on the beneficial effects of either bromelain or a vegetarian diet (possibly allowing fish), it is suggested that they might be beneficial. Limitations to this research are that the findings are based on relatively few studies, many of which were without control groups or extrapolated from animal models. No large-scale studies have been done with LE patients to substantiate the benefit, if any, of these individual dietary interventions, and if they were conducted, the remission and exacerbation pattern of LE may interfere with elucidating their effectiveness. Also, dietary changes should not be attempted without a physician's approval/monitoring.

* Department of Human Nutrition, Food, & Animal Sciences, University of Hawaii at Manoa, Honolulu, HI.
Address reprint requests to Amy C. Brown, PhD, RD, Department of Human Nutrition, Food, & Animal Sciences, University of Hawaii @ Manoa, Honolulu, HI 96822. Email: amybrown@hawaii.edu, 808/956-3846.
Lupus Erythematosus and Nutrition: A Review of the Literature

The relationship between nutrition and lupus erythematosus (LE) remains elusive especially since most autoimmune diseases are multifactorial in origin with genetic, environmental, hormonal, viral, and psychoneurological influences all playing a role.1,2 It is known that no specific diet for the treatment of LE exists; however, a review of the literature investigating the influence of nutrition in both animals and humans suggests that certain substances in the diet may aggravate or alleviate LE symptoms (Tables 1 & 2).

This article elaborates on many of the studies behind the various dietary compounds listed in Tables 1 & 2 that may aggravate or alleviate LE symptoms. Although, much of the research presented in this review article is based on animal studies, those involving human experiments are also discussed. Human subjects are designated as having discoid or systemic lupus erythematosus when specified in the literature, or "LE" if no such designation was provided.

Possible Harmful Substances

Excess Energy. Most animal studies suggest that energy restriction ameliorates autoimmune disease3,4 and increases longevity in New Zealand black or white mice (NZB/NZW) which spontaneously develop an autoimmune disease resembling systemic LE.5-8 The disease in these mice is manifested by synthesized antibodies to double stranded DNA, high levels of circulating immune complexes (a marker of SLE clinical activity), and deposition of the later in the renal glomerulus. As a result, glomerulonephritis is the major cause of death with mortality rates averaging 50 percent by about 8.5 months.9

Caloric restriction delays the onset of glomerulonephritis in these mice, however, this dietary manipulation is severe and initiated early - parameters that cannot be duplicated in the human model since caloric restrictions would be equivalent to 25-35 percent or more of total intake prior to adolescence. The degree of energy restriction in one mice study was even higher at 60 percent (at 2 months of age) versus the control group allowed to feed ad libitum. At 14 months, the percentage of these mice still living that had not died due to renal disease was 100 and 0 percent respectively.10 Although
there are no studies showing the effect of caloric restriction in humans, Kipen reported that SLE disease activity was associated with an increase in body mass index (BMI) over a three year period in pre-menopausal women (n=55).\(^{11}\)

In terms of animal models, the exact mechanisms by which energy restriction benefits autoimmune conditions are still being explored. Safai-Kutti reported a reduction in circulating immune complexes, occurring in mice eating an energy-restricted diet,\(^{12}\) while Chandraseker observed a decrease in pro-inflammatory cytokines.\(^{13}\) Mizutani reported that reducing calories to 32 percent or less than controls in autoimmune-prone mice resulted in decreased immunoprecipitates, less coronary vascular lesions, and fewer glomerular lesions.\(^{14}\) Restricting calories in mice was reported by Meydani to also reduce prostaglandin E\(_2\) (PGE\(_2\)) synthesis, another compound known for its proinflammatory effects.\(^{15}\) One study restricting calories in mice and comparing them to a control group reported a delay or inhibition of Sjogren's syndrome abnormalities, increased immunosuppressive transforming growth hormone beta-1, and decreased cytokines.\(^{12}\)

Excess Protein. Low-protein diets are also known to improve survival rates in autoimmune mice.\(^{6}\) Mice fed a moderately restricted protein diet experienced longer lasting immunologic functions and delayed development of autoimmunity when compared to mice fed a normal protein diet.\(^{16}\)

These results are not surprising since high protein intakes have been commonly associated with acceleration of kidney damage in both autoimmune-prone humans and experimental animals.\(^{17}\) Protein restriction has long been the standard treatment for renal failure.\(^{18}\)

After establishing that the amount of dietary protein influenced the outcome of autoimmune-prone mice, researchers focused on specific types of protein. One study indicated that limiting proteins containing high levels of phenylalanine and tyrosine, such as those found in beef and dairy products, is beneficial to mice with a systemic LE-type condition.\(^{4}\) Carr and others reported that 12 of 15 mice fed a casein-free diet were still alive at 10 months, compared to only 1 in 10 mice on the control diet, and that casein-free mice had less anti-DNA antibody and immunoreactants in the glomeruli.\(^{19}\) Another amino
The acid in question is tryptophan because elevated urinary excretion levels of tryptophan metabolites were reported in 11 discoid lupus patients. Researchers have also suggested that tryptophan breakdown products may lead to autoantibody production, and a research study investigating this possibility determined that a tryptophan-deficient diet fed to lupus animals resulted in longer survival times.

The average American ingests about 100 grams of protein a day, an amount that can be reduced by almost half in healthy people without jeopardizing their protein requirements. The Recommended Daily Allowances (RDA - 1989) for protein are 50 grams for women and 63 grams for men in the 25-50 years age group. Vegetarian diets often automatically reduce dietary protein, and there was a case study reported of a patient with SLE that went on a vegetarian diet (zero percent animal protein). Her antibody titers returned to normal, urinary protein excretion decreased, and serum albumin rose. Although protein dropped from 97 to 32 grams, so did calories (2295 to 1216) and grams of fat (70 to 50). The caloric reduction along with the fact that this is a single-case study and that the possibility of remission exists does not warrant any dietary recommendation, however, further study in this area is suggested.

High Fat (especially saturated fat and omega-6 polyunsaturated fatty acids). Diets high in overall fat were associated with more severe autoimmune disease and decreased life span in mice compared to a control group, whereas low fat diets were reported to retard the development of disease.

The type of dietary fat also dramatically affects the onset of autoimmune disease in mice particularly if it consists of saturated or omega-6 polyunsaturated fatty acids. Alexander reported that by 10 months of age, the percentage of mice still alive was; 94 percent of the fish oil (omega-3 polyunsaturated fatty acids) group, 35 percent of the mice fed corn oil (omega-6 polyunsaturated fatty acids), and zero percent of the group fed saturated fat in the form of lard (n-9 fatty acids). Fernandes supported these results with a study showing that omega-3 fatty acids lowered the severity of autoimmune disease in mice, while both saturated (n-9) and polyunsaturated (n-6) dietary lipids exacerbated the disease.
Autoimmune-prone mice fed saturated fats experience more severe nephritis and glomerular pathology.28,29 Several researchers have reported that mice fed saturated fat diets produced higher levels of autoantibodies than those on low fat or high unsaturated fat diets.28,30,31 High fat diets in mice have also been reported to increase proteinuria,24,32 prostaglandin (PGE\textsubscript{2}) production, cytokine levels (interleukin 6),33 and macrophage function.24 These types of results have led some researchers to suggest that dietary fat, especially saturated fat, restriction may be an effective therapeutic approach to murine lupus nephritis.29

Several studies suggest that limiting essential omega-6 fatty acids and/or zinc may suppress immune response, and therefore flare-ups. Hurd and Gilliam postulated that some of the prostaglandins or related products of arachidonic acid (prostacyclin, thromboxane, or lipoxigenase pathway products) may be necessary for the full expression of autoimmunity.35 Essential fatty acid deficiency in mice resulted in an increased survival time, delay in antibody production, and less severe renal disease.34-36 However, researchers of another study reported that the survival of mice (MRL/l) was not affected by polyunsaturated fatty acid deficiency.37 In studies that do show positive results, limiting essential fatty acids may be beneficial because less are then available for the synthesis of specific prostaglandins responsible for inflammation.

Thorner conducted one of the few human studies in which SLE patients reduced their omega-6 polyunsaturated fatty acid intake. After one year, the number of patients with active SLE dropped from 11 to 3. Spontaneous improvement, placebo effects, and lack of a control group must be considered as possible influences in this and other studies investigating the role of diet on LE symptoms. However, the researchers suggested the possibility of reducing the intake of omega-6 polyunsaturated fatty acids as a non-pharmacological approach to the treatment of patients with SLE.38 Foods high in omega-6 fatty acids are listed in Table 4.

Zinc. Zinc is important for enhancing the immune response, and MRL/1 mice on zinc-deficient diets were reported to have increased survival times. Researchers observed a decrease in lymphoproliferation,39 and a delayed expression of autoantibodies.40 It has
been suggested that zinc deprivation results in increased serum corticosteroids which may contribute to the decreased number of autoimmune disease symptoms.39

Iron. Only one animal study suggests that high iron intakes, seven times the requirement, in mice resulted in high proteinuria, renal histopathology, and mortality. The researchers theorized that excess iron may enhance the Haber-Weiss reaction causing free radical damage of the tissues. During an inflammatory response, neutrophils and macrophages release superoxide (O_2^-) and hydrogen peroxide (H_2O_2), and the reaction of these compounds with iron produces a highly toxic hydroxyl radical (OH^-).41 A source of excess iron for humans is ingestion of pre-natal vitamin/mineral supplements that often contain 30-60 mg (Recommended Dietary Allowance (RDA) for women = 15 mg/day).

Alfalfa (L-Canavanine). Researchers studying the cholesterol-lowering effect of alfalfa seeds observed signs of SLE-like symptoms in both laboratory animals and a few human case studies.42-44 Two human patients were reported to experience symptoms of malaise, lethargy, depression, and arthralgias after ingesting 8-15 alfalfa tablets daily.45 In vitro experiments suggest that L-canavanine, an amino acid in alfalfa products, acts on suppressor-inducer T cells to regulate antibody synthesis and lymphocyte proliferation.46 Feeding L-canavanine to autoimmune mice resulted in increased antibody production and higher renal histology scores.47 However, the alfalfa tablets of one manufacturer tested negative for canavanine (with a detection limit of 5 ppm), and alanine, an amino acid, has previously been mistaken for canavanine.48

Possible Beneficial Substances

Vitamin E. Although animal studies on MRL/lpr mice show that vitamin E treatment delays the onset of autoimmunity and extends mean survival time,49 treating LE patients with vitamin E continues to be controversial. Vitamin E studies related to LE first started to appear in the late 1940s, and a historical overview of the literature reveals that large vitamin E doses may be beneficial in some cases, while dosages below 300 IU may not be
For example, four discoid LE patients in one study, receiving 900-1600 IU of vitamin E daily, showed partial or complete clearing of rashes, while two patients receiving only 300 IU daily had no benefit. Other human studies reporting either positive or negative results of vitamin E on discoid LE lesions are listed in Table 3.

Investigators warn that "while the effect of mixed tocopherols in LE is apparently profound, often rapid and at times almost specific, the fact remains that recurrences are not uncommon." Also, Vitamin E is a fat soluble vitamin that acts as an anticoagulant at the high dosages used in these studies, much higher than the Reference Daily Intake (RDI) of 30 IU (9 mg) alpha-TE. Dietary sources of vitamin E are listed in Table 4.

Vitamin A. Vitamin A-deficient LE animals were reported to experience more severe lupus-like symptoms. Researchers attributed this observation to increased hyper-gammaglobulinemia and an earlier onset of autoantibodies, both naturally occurring thymocytotoxic autoantibodies and IgM anti-erythrocyte antibodies. Three patients whose skin lesions flared with sun exposure were given 50 mg of beta-carotene three times daily, and experienced a clearing of all lesions starting within one week of treatment. Other researchers reported that very high levels of vitamin A (100,000 U daily for 2 weeks) in SLE patients resulted in an enhancement of antibody-dependent cell-mediated cytotoxicity, natural killer cell activity and blastogenic response to mitogens. However patients should be cautious with extremely high levels of vitamin A unless they are water-soluble, because ingesting excess vitamin A from animal sources may result in one or more of the following symptoms: anemia, headache, dry skin, hair loss, nausea, lack of appetite, bone pain, stunted growth in infants/children, pseudohydrocephalus, and death. Table 4 lists vegetable sources high in vitamin A (beta-carotene). Although excess beta-carotene from plant sources does not result in the symptoms elicited from animal sources, it can produce hypercarotenemia turning the skin slightly orange.

Selenium (Se). Anti-inflammatory properties have been attributed to selenium, a natural antioxidant. Supplementing the diets of auto-immune mice with selenium increases their survival time, and although the mechanism by which selenium exerted this effect is unclear,
there is a significantly higher level of natural killer cell activity in the selenium-supplemented
mice. It was also observed that low levels of blood glutathione-peroxidase (GSH-Px) exist in some
patients with systemic LE, and that GSH-Px activity increased slowly after administering tablets
containing 0.2 mg selenium (Na₂SeO₃) and 10 mg tocopherol succinate for 6-8 weeks. Some
researchers have suggested that physicians could check GSH-Px activity and consider selenium and
vitamin E supplementation in people with LE or other conditions such as severe psoriasis, eczema,
dermatitis herpetiforms, and liver disease. Again, warnings against high intakes of selenium should be
given to patients since toxicity results in symptoms of diarrhea, vomiting, hair and nail loss, and
lesions of the nervous system and skin. Dietary sources of selenium are listed in Table 4.

Fish Oils. Fish oils retard, but do not entirely prevent, lupus-like disorders found in
autoimmune-prone mice. These mice eventually develop the illness, but at a slower rate
than controls. Fish oil supplementation appears to have an anti-inflammatory effect, and
prolongs the life of autoimmune-prone mice. The increased life span might be due to
delayed onset of renal disease since mice introduced to a fish oil diet as weanlings had an
almost total protection against renal disease. One possible mechanism related to the
beneficial effect of fish oil in autoimmune-prone mice may be related to its high omega-3
fatty acid content - eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

Omega-3 fatty acids inhibit the production of eicosanoids (pro-inflammatory
compounds such as prostaglandin E₂ (PGE₂) and leukotriene B₄ (LTB₄)), while fatty acids
from the omega-6 series have the opposite effect. Arachidonic acid, an omega-6 fatty
acid, is metabolized into pro-inflammatory eicosanoids. Omega-3 fatty acids can
displace arachidonic acid in the cell membranes, resulting in less PGE₂ formation,
and compete with arachidonic acid for cyclooxygenase and lipoxygenase enzymes.
This competition shifts production to the non-inflammatory series-3 prostaglandins and series-5
leukotrienes that have been suggested to directly suppress immunologic and or
inflammatory mediators of murine lupus. Specifically, there is a reduced synthesis of
endogenous dienoic cyclooxygenase metabolites and leukotriene 4 (LT₄), while increased
synthesis of trienoic PG and leukotriene 5 (LT₅). Another factor is that omega-3 fatty
acids are poor substrates for cyclooxygenase which is the rate-limiting step in the synthesis of prostaglandins, particularly PGE\(_2\).\(^{78}\)

Omega-3 fatty acids may also inhibit the inflammatory response by decreasing T-cell activity and cytokine (stimulate prostaglandin production) concentration.\(^{85-87}\) Normally, inflammation activates T cells and cytokines at the site of tissue injury and in the circulation.\(^{82}\) Certain types of cytokines are also involved in peroxidation which is a common final pathway in much of the tissue damage seen in intense inflammation. Cytokines (IL-1 and TNF-alpha) generate H\(_2\)O\(_2\) and O\(_2\)\(^-\) in mesangial cells and macrophages, and these can result in free radical damage to the tissues. Reactive oxygen intermediates (ROI), implicated in immune-complex mediated glomerulonephritis, affect glomerular filtration rate, impair sieving, and inhibit renal function. ROIs may react with polyunsaturated fatty acids in cell membranes resulting in derivatives that attract inflammatory cells that can further secrete inflammatory cytokines and growth factors. Peroxidation of lipid membranes also leads to altered fluidity, and may change ion transport and enzyme activities in target tissues such as renal cells.\(^{82}\) To help protect vessels and organs from the damage of excess inflammation, some researchers have suggested the administration of antioxidants such as vitamin E and selenium.\(^{81}\)

The majority of animals studies show omega-3 fatty acids alleviating the severity of autoimmune disease, but Table x shows only modest anti-inflammatory effects have been reported in humans with LE.\(^{88-90}\) However, omega-3 fatty acids have been reported to improve blood lipid values which is of benefit to patients with SLE who have a higher rate of premature atherosclerosis than the general population.\(^{89,91,92}\) Despite the controversy over whether or not omega-3 fatty acids benefit humans with autoimmune conditions, Kinsella stated that hospital nutritional support, such as enteral and parenteral formulas in addition to intravenous emulsions, may need to be modified for use in patients with inflammatory reactions such as lupus erythematosus, rheumatoid arthritis, and multiple sclerosis.\(^{93}\) Dietary sources of omega-3 fatty acids (EPA/DHA) are listed in Table 4.

Bromelain. Although no animal or human studies have been conducted on bromelain related to LE, this complex of proteases from the pineapple plant has been known to act as
an anti-inflammatory agent.\cite{94}

Evening Primrose Oil (EPO). EPO was reported to increase survival time in autoimmune mice,\cite{95} and this may be due to its gamma-linolenic acid (19\%) content from which PGE$_1$ is formed. Several studies support the role of PGE$_1$ treatment alone in delaying the onset and severity of lupus in autoimmune animals.\cite{96-98} This beneficial effect of PGE$_1$ might be due its anti-inflammatory effects via membrane stabilization and lowering lymphocyte activity.\cite{99} Feeding rodents at least 5-10 g gamma-linolenic acid/100 g total fatty acids has been shown to decrease lymphocyte proliferation and natural killer cell activity.\cite{100} In addition, a derivative of gamma-linolenic acid has been postulated to block the transformation of arachidonic acid to leukotrienes that have proinflammatory effects.\cite{101}

Flaxseed. Two studies, one with mice and the other with human subjects, suggest that flaxseed may be beneficial. A 15 percent flaxseed diet provided to mice, and compared to a control diet, resulted in decreased proteinuria, spleen lymphocyte proliferation, and mortality. Flaxseed also appeared to preserve glomerular filtration rate (GFR).\cite{102} Eight humans with SLE were given 30 grams of flaxseed mixed in with their cereal or juice (tomato or orange), and were reported to have improved renal function defined by decreased proteinuria, decreased serum creatinine, and increased creatinine clearance. Also noted in these human subjects, was the ability of flaxseed to inhibit platelet activating factor (PAF) induced platelet aggregation.\cite{103} PAF, a participant in the inflammatory response, is often elevated in LE patients. Studies in lupus animal models suggest that inhibiting PAF resulted in decreased proteinuria and increased survival times.

Flaxseed is one of the richest food sources for lignans which are natural antagonists to PAF receptors. This plant food is also high in an omega-3 fatty acid, alpha-linoleic acid.\cite{103} It has been reported that the beneficial affect of these and possible other compounds in flaxseed is best achieved by ingesting it in its whole form, rather than in its oil (linseed oil) or defatted form.\cite{104} Regardless of the form ingested, patients should be cautioned of possible allergic reactions.\cite{105}
Plant Herb. *Tripterygium wilfordii* hook F (TWH), also known as Thunder God Vine, is a plant that has been used in China for more than 2000 years to treat SLE and rheumatoid arthritis.\(^{106-109}\) In vitro tests support this traditional practice through evidence that the plant has immunosuppressive qualities.\(^ {110}\) Ramagolam reported that TWH inhibited lymphoproliferation (mitogen-stimulated), production of cytokines by monocytes and lymphocytes, and prostaglandin E\(_2\) production via the cyclooxygenase (COX-2) pathway.\(^ {111}\)

Despite the promising benefit of TWH, it is difficult to evaluate the use of herbal therapies since their apparent successes and sometimes serious side-effects are often not documented, particularly for renal patients. Reported side-effects of TWH include gastrointestinal upset, infertility, and suppression of lymphocyte proliferation. At least one case was reported of a previously healthy young man who died of shock possibly related to cardiac toxicity.\(^ {112}\) As with most herbs, its use during pregnancy or lactation is not recommended; a report exists of a woman taking TWH during pregnancy and giving birth to a child with a protrusion in the lower back of its head (occipital meningoencephalocele).\(^ {113}\)

DHEA (dehydroepiandrosterone). Although not a nutrient or a dietary supplement, this steroid hormone can be purchased over-the-counter. Animal studies with autoimmune-prone mice have shown that DHEA produces similar results to those obtained with caloric restriction - decreased antibody synthesis and prolonged survival rates.\(^ {114-116}\) In humans, a double-blind, placebo-controlled study of 28 SLE patients taking DHEA (200 mg/day) for 3 months resulted in decreased lupus flares, SLE Disease Activity Index scores, disease activity (assessed by physicians and patients), and prednisone dosages. The researchers observed only mild acne as a side-effect and concluded that DHEA may be a useful therapeutic agent for the treatment of mild to moderate SLE.\(^ {117}\) Several other human studies, however these without control groups, also indicated that DHEA might be beneficial to patients with LE.\(^ {118-121}\)

Immune responses are often influenced by sex hormones.\(^ {122}\) Androgens naturally suppress the immune system and concomitant inflammation, while estrogens can do either, although they usually accelerate autoimmunity.\(^ {123}\) DHEA is an androgen and an
intermediate compound in testosterone synthesis. Women with autoimmune diseases like LE and rheumatoid arthritis have lower plasma androgens than controls, and researchers theorize that the ingestion of weak androgens, like DHEA, may improve the clinical manifestations of the disease.124,125 The androgenic nature of DHEA in women taking over 50 mg a day dictates that a doctor's supervision and caution should be elicited. Minor side-effects at this dosage in women include acne, facial hair growth, menstrual changes, and improved mood, however, these symptoms disappeared after DHEA intake was stopped. Short-term studies usually report no serious side-effects in humans ingesting DHEA,126 but long-term trials have not been performed and androgen replacement remains in the realm of clinical investigation.127 There is the possibility that DHEA can convert into certain sex hormones,128 and there is speculation about its safety since it has been linked to hepatic cancer in rats.129

Food Elimination Diets. Some researchers have reported that LE patients may be more prone to food allergies.130,131 Several case studies indicate that systemic LE patients experience remissions following food elimination diets.132,133

Calcium Plus Vitamin D (if taking corticosteroids). Calcium and vitamin D are not reported to alleviate symptoms of LE, however, they are recommended as part of the treatment against osteoporosis, the most serious side-effect of long-term corticosteroid therapy.134 The long-term use of corticosteroids, the most commonly prescribed immunosuppressants,135 are responsible for an estimated 20 percent of the 20 million osteoporosis cases in the United States. One in four of these patients experiences a fracture,136 but unlike other forms of osteoporosis, the majority of corticosteroid-induced osteoporosis fractures are at the spine.134 This is a particular concern for SLE patients that have been reported to have reduced bone mineral densities compared to matched healthy controls.137,138

Cushing first associated skeletal mass loss with hypercortisolism in 1932.139
however, patients prescribed long-term corticosteroid therapy are not always 1) informed of the osteoporosis risk, or 2) provided any form of osteoporosis prophylaxis. Researchers in one study reported that only 5.6 percent of 214 patients in a British hospital receiving corticosteroid therapy (37 percent for four or more months) were given treatment to help delay the onset of osteoporosis.140

To combat the long-term negative side-effects of corticosteroids, the American College of Rheumatology (ARC) has formulated optimal medical management guidelines to reduce the risk of bone loss in patients. Preventative treatment should begin as soon as long-term corticosteroid therapy is started and include baseline bone mineral test, lowest effective dosage, hormone replacement therapy, medication, reducing risks for falls, lifestyle (weight-bearing exercise, and avoiding smoking, immobilization, and amenorrhea), and nutrient supplementation (supplements for calcium (up to 1500 mg) and vitamin D (20 ug (800 IU), less in children)).136 Another approach would be to initially seek these nutrients through food sources and not to exceed supplementation in excess of 10 ug (400 IU) for vitamin D. Other nutrient factors to reduce include eliminating excess protein, salt, alcohol, or caffeine. Side-effects of excess calcium supplements include constipation, headaches, calcification of the soft tissues, and certain kidney stones. Vitamin D supplements should also not be taken in excess, because they have been reported to cause headache, nausea, calcification of the soft tissues and bone, a tendency toward kidney stones, and in children - possible stunted growth, mental retardation, and death by renal failure.

Conclusion

No dietary recommendations currently exist for LE patients, however, physician researchers postulated over fifteen years ago that diet might be one of the possible future therapies for people with LE.141 Tables 1 & 2 provide tentative dietary suggestions based on a literature review. Patients with LE may benefit from a balanced diet limited in calories and fat (especially saturated and omega-6 polyunsaturated fatty acids), containing rich sources of vitamin E, vitamin A (beta-carotene), selenium, and calcium. Supplements of
fish oil, evening primrose oil, flaxseed, a plant herb (Tripterygium wilfordii), DHEA (under a physician’s care), and calcium plus vitamin D (if taking corticosteroids) may also be beneficial. Foods high in omega-3 polyunsaturated fatty acids are recommended and include fish oils, fatty fish, certain vegetable oils such as walnut and canola, and soybeans. Conversely, foods to be avoided that contain omega-6 polyunsaturated fatty acids are vegetable oils made from corn, cottonseed, poppyseed, safflower, sesame, soybean, sunflower, and walnut. People with LE may also benefit by avoiding supplements containing protein, omega-6 polyunsaturated fatty acids, zinc, and iron. Avoiding an excess of foods rich in these compounds might possibly be beneficial which would consist of limiting meats (protein), dairy (protein), oysters (zinc), Brazil nuts (zinc), and enriched grains and cereals, including breakfast cereals (zinc and iron). It may also be judicious to avoid alfalfa tablets or alfalfa in any form including sprouts. Remissions have been reported in people with LE going on food elimination diets, and perhaps these could be tried by LE patients in an attempt to alleviate flare-ups or eliminate the possibility of any existing food allergies. Further investigation should be conducted on the possible beneficial use of bromelain and vegetarian diets in people with LE.

Again, these tentative dietary suggestions are based on a literature review and the nature of remissions occurring in people with LE along with any medications make it difficult to evaluate their effectiveness. The purpose of this paper was to elucidate from the scientific literature the dietary compounds that alleviate or exacerbate symptoms of LE in both animal and human models. Extrapolations are tenuous at best, and the lack of control groups and/or use of animal studies sheds questionable query on the results. However, an ample array of research has been conducted and the results are summarized in the form of Tables 1 & 2. This compilation is based on a limited number of studies and no large scale studies have been done with LE patients to substantiate the benefit, if any, of these dietary interventions. Nevertheless, the possibility exists that patients with LE may benefit by incorporating one or more of these dietary modifications with the approval/monitoring of a physician.

\[142\]
References

Layne KS, Goh YK, Jumpsen JA, et al. Normal subjects consuming physiological levels of 18:3(n=3) and 20:5(n=3) from flaxseed or fish oils have characteristic differences in plasma lipid and lipoprotein fatty acid levels. *J Nutr* 126(9):2130-2140, 1996.

Peterson LD, Thies F, Calder PC. Dose-dependent effects of dietary gamma-linolenic acid on rat spleen lymphocyte functions.
21

132. Cooke HM, Reading CM. Dietary intervention in systemic lupus erythematosus: 4 cases of clinical remission and reversal of

POSSIBLE HARMFUL DIETARY SUBSTANCES RELATED TO LUPUS ERYTHEMATOSUS

<table>
<thead>
<tr>
<th>Harmful Substances</th>
<th>Suggested Maximum Daily Intakes<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess Energy</td>
<td>2400-2600 calories (men)/1600 calories (women)<sup>b</sup></td>
</tr>
<tr>
<td>Excess Protein</td>
<td>63 g (men)/50 g (women)</td>
</tr>
<tr>
<td>High Fat (especially saturated</td>
<td>30% of calories/65 g (total fat)</td>
</tr>
<tr>
<td>& polyunsaturated omega-6 fatty acids)</td>
<td>10% of kcalories/20 g (saturated fat)</td>
</tr>
<tr>
<td>Zinc</td>
<td>15 mg (men)/12 mg (women)</td>
</tr>
<tr>
<td>Iron</td>
<td>10 mg (men)/15 mg (women)</td>
</tr>
<tr>
<td>L-canavanine (alfalfa tablets)</td>
<td>NA</td>
</tr>
</tbody>
</table>

^a Based on the 1989 Recommended Dietary Allowances (RDA) for adults 25-50 yrs; 1997 Dietary Reference Intakes (DRI); Reference Daily Intakes (RDI) and Daily Reference Values (DRV).

^b Note: These values represent the average daily caloric intake of Americans (the majority of which are overweight) and are below the RDA values for men (2900 kcalories) and women (2200 kcalories).
POSSIBLE BENEFICIAL DIETARY SUBSTANCES RELATED TO LUPUS ERYTHEMATOSUS

<table>
<thead>
<tr>
<th>Beneficial Substances</th>
<th>Daily Intakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin E<sup>a</sup></td>
<td>30 IU/9 mg alpha-TE/(400-1500 IU/130-500mg)</td>
</tr>
<tr>
<td>Vitamin A (beta-carotene)</td>
<td>5000 IU/1000 ug RE</td>
</tr>
<tr>
<td>Selenium</td>
<td>70 ug</td>
</tr>
<tr>
<td>Fish Oils<sup>c</sup> (omega-3 fatty acids)</td>
<td>(1.5 - 3 g of EPA/DHA)</td>
</tr>
<tr>
<td>Evening Primrose Oil</td>
<td>(5 g)</td>
</tr>
<tr>
<td>Flaxseed</td>
<td>(30 g)</td>
</tr>
<tr>
<td>Plant Herb<sup>d</sup> (Tripterygium wilfordii)</td>
<td>(10 mg – side-effects?)</td>
</tr>
<tr>
<td>DHEA<sup>e</sup> (dehydroepiandrosterone)</td>
<td>(200 mg - side-effects?)</td>
</tr>
<tr>
<td>Food Allergy Elimination Diets</td>
<td>NA</td>
</tr>
<tr>
<td>Calcium (if taking corticosteroids)</td>
<td>1000 mg</td>
</tr>
<tr>
<td>Plus Vitamin D</td>
<td>400 IU/10 ug</td>
</tr>
</tbody>
</table>

^a Based on the Reference Daily Intakes (RDI). Amounts in () represent tentative research data (refer to review).

^b High dosages of vitamin E act as an anticoagulant.

^c Most fish oil capsules contain about 300 mg of omega-3 fatty acids, so about 2-3 tablets/meal will yield 1.8 - 2.7 g.

^d Previously reported side-effects include, but are not limited to, gastrointestinal upset, infertility, suppression of lymphocyte proliferation, and possible cardiac toxicity and birth defects.

^e Caution: People should not take DHEA unless under the care of their physician who approves such a regimen. The benefits of DHEA reported in people with lupus occurred at high, and questionable, intakes of 200 mg/day. DHEA is an androgenic with male hormonal influences, and dosages as low as 50 mg/day have been reported to cause minor side-effects such as acne, facial hair growth, menstrual changes, and improved mood. There are also animal studies in which DHEA appears to cause liver cancer in rats.

Table 3. Selected human studies on the positive and negative results of vitamin E on LE lesions.
POSITIVE RESULTS

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DOSAGE (per day)</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>600 mg tocopherol (natural mixed)</td>
<td>24/25 improved</td>
</tr>
<tr>
<td>53</td>
<td>1000-2000 mg tocopherol (synthetic & natural) + Ca pantothenate (10-15 g) or Na pantothenate (5-10 g)</td>
<td>Complete clearing of a majority of 67 subjects</td>
</tr>
<tr>
<td>54</td>
<td>300-1200 IU tocopherol + topical vitamin E</td>
<td>4/7 showed excellent improvement</td>
</tr>
<tr>
<td>55</td>
<td>300-400 mg L-tocopherol</td>
<td>47 subjects - beneficial only in those with recent lesions</td>
</tr>
<tr>
<td>56</td>
<td>150-250 mg synthetic vitamin E</td>
<td>17/25 recovered, but 2 relapses within 6 months</td>
</tr>
<tr>
<td>57</td>
<td>150 mg alpha-tocopherol followed by 300 mg + intramuscular injections</td>
<td>1 patient with severe facial lesions showed improvement after 1 month</td>
</tr>
</tbody>
</table>

NEGATIVE RESULTS

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DOSAGE</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>600 IU mixed natural tocopherols</td>
<td>2/9 improved</td>
</tr>
<tr>
<td>59</td>
<td>600 mg tocopherol + 400mg intramuscularly (twice weekly)</td>
<td>6/45 improved</td>
</tr>
<tr>
<td>60</td>
<td>204 mg dl, alpha-tocopherol acetate + 50 mg dl, alpha-tocopherol acetate or 400 mg mixed tocopherols twice weekly</td>
<td>5/45 improved</td>
</tr>
<tr>
<td>61</td>
<td>1200 mg tocopherol</td>
<td>0/7 improved</td>
</tr>
<tr>
<td>Acid Food Source (g/100g)</td>
<td>Omega-6 Fatty</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Safflower Oil</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>Sunflower Oil</td>
<td>66.5</td>
<td></td>
</tr>
<tr>
<td>Poppyseed Oil</td>
<td>66.5</td>
<td></td>
</tr>
<tr>
<td>Corn Oil</td>
<td>57.8</td>
<td></td>
</tr>
<tr>
<td>Wheat Germ Oil</td>
<td>54.8</td>
<td></td>
</tr>
<tr>
<td>Walnut Oil</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td>Cottonseed Oil</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>Sesame Oil</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>Mayonnaise</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>Rice Bran Oil</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>Liquid Margarine</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>Peanut Oil</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>Brazil Nuts</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Tahini</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>Pine Nuts</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>Pumpkin Kernels</td>
<td>20.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin E Food Source (mg α-Tocopherol/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Germ Oil</td>
</tr>
<tr>
<td>Sunflower Oil</td>
</tr>
<tr>
<td>Sunflower Seed</td>
</tr>
<tr>
<td>Rice Bran Oil</td>
</tr>
<tr>
<td>Almonds</td>
</tr>
<tr>
<td>Filberts/Hazelnuts</td>
</tr>
<tr>
<td>Canola Oil</td>
</tr>
<tr>
<td>Cod Liver Oil (Fish Oil)</td>
</tr>
<tr>
<td>Wheat Germ</td>
</tr>
</tbody>
</table>
Beta-Carotene

Food Source (RE/100 g cooked, unless noted)

<table>
<thead>
<tr>
<th>Food Source</th>
<th>RE/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrot Juice (canned)</td>
<td>2575</td>
</tr>
<tr>
<td>Carrots (raw)</td>
<td>2454</td>
</tr>
<tr>
<td>Sweet Potato</td>
<td>2182</td>
</tr>
<tr>
<td>Shallots (raw)</td>
<td>1250</td>
</tr>
<tr>
<td>Mixed Vegetables (canned)</td>
<td>1164</td>
</tr>
<tr>
<td>Pumpkin</td>
<td>1082</td>
</tr>
<tr>
<td>Spinach</td>
<td>819</td>
</tr>
<tr>
<td>Kale</td>
<td>740</td>
</tr>
<tr>
<td>Apricot Halves (dried)</td>
<td>723</td>
</tr>
<tr>
<td>Collard Greens</td>
<td>598</td>
</tr>
<tr>
<td>Red Bell Pepper (raw)</td>
<td>570</td>
</tr>
</tbody>
</table>

Selenium

Food Source (ug/100 g)

<table>
<thead>
<tr>
<th>Food Source</th>
<th>Selenium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pike</td>
<td>190</td>
</tr>
<tr>
<td>Carp</td>
<td>159</td>
</tr>
<tr>
<td>Herring</td>
<td>141</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>124</td>
</tr>
<tr>
<td>Wheat Germ</td>
<td>101</td>
</tr>
<tr>
<td>Crayfish/Crawdads</td>
<td>100</td>
</tr>
<tr>
<td>Anchovies</td>
<td>90</td>
</tr>
<tr>
<td>Scallops</td>
<td>82</td>
</tr>
<tr>
<td>Tuna (in water)</td>
<td>80</td>
</tr>
<tr>
<td>Sunflower Seeds</td>
<td>78</td>
</tr>
<tr>
<td>Lobster</td>
<td>77</td>
</tr>
<tr>
<td>Octopus</td>
<td>75</td>
</tr>
<tr>
<td>Oysters</td>
<td>72</td>
</tr>
<tr>
<td>Chicken Livers</td>
<td>71</td>
</tr>
<tr>
<td>Whole Wheat Flour</td>
<td>71</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>71</td>
</tr>
<tr>
<td>Salmon</td>
<td>60</td>
</tr>
<tr>
<td>Liverwurst - Pork</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 5. Selected human studies on the benefit of fish oils for LE symptoms (clinically & serologically).

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DOSAGE (per day)</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most fish oil capsules contain about 300 mg of omega-3 fatty acids; 180 mg EPA & 120 mg DHA, so 3 tablets/meal yields 2.7 g

* Nutrient analysis based on Food Processor Plus (Version 6.0), ESHA Research, Salem, OR.
<table>
<thead>
<tr>
<th>88</th>
<th>(2.3 g EPA/1.4 g DHA)<sup>a</sup></th>
<th>8/17 treatment and 2/17 controls improved in the 1st 3 months. No significant difference after 6 months.</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>6 or 18 g fish oil (1.8 or 5.4 g EPA/DHA)</td>
<td>12 subjects - no significant improvement in immune complex, anti-DNA titer, or prostacyclin (PGI<sub>2</sub>)</td>
</tr>
<tr>
<td>90</td>
<td>15 g fish oil (4.4 g EPA/DHA)</td>
<td>21 subjects - no significant improvement in renal function or disease activity</td>
</tr>
</tbody>
</table>

^a“Fish oil” dosages are often reported instead of the active components - EPA/DHA.