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Appendix from M. A. Butler and A. A. King, “Phylogenetic
Comparative Analysis: A Modeling Approach for Adaptive Evolution”
(Am. Nat., vol. 164, no. 6, p. 683)

Mathematical Details
The Hansen Model

We begin with a phylogeny with known topology and branch lengths. Let N denote the number of terminal taxa.
For definiteness, let us think of these taxa as species. Each species i has a lineage, which is the path of branch
segments traversed from the root (most basal node) of the tree to the ith terminus.

Let denote the state of the ith lineage (i.e., the value of the quantitative character of interest) at time t.X (t)i

At the root of the tree, , and at the terminal taxa, . Thus is the state of the root of thet p 0 t p T X (0)i

phylogeny, and is the current state of extant species i.X (T )i

The model of Hansen (1997) assumes that for each lineage the quantitative character of interest evolves
according to an Ornstein-Uhlenbeck (OU) process

dX (t) p a[b (t) � X (t)]dt � jdB (t), (A1)i i i i

. The function represents the optimum trait value and as such identifies the selection regime acting0 ≤ t ≤ T b (t)i

on lineage i over the course of its history. The symbols denote increments of a standard Brownian motiondB (t)i

(BM); heuristically, we can think of them as normal random variables with mean 0 and variance dt. We define
the correlation of these random terms by the equationrij

[ ]Cov dB (t), dB (t) pr (t)dt.i j ij

(Note that may depend on time.) It is well known that equation (A1) defines a Gaussian process, and it isrij

elementary to compute its moments. In particular, we have

T

�aT �atE[X (T )FX (0) p v ] p v e � ae b (T � t)dt, (A2)i i 0 0 � i
0

T

2 �2atCov [X (T ), X (T )FX (0) p X (0) p v ] p j e r (T � t)dt. (A3)i j i j 0 � ij
0

These equations are true in more generality than we will require. Let us therefore make assumptions on the
forms of and to adapt these general results to our present needs. In particular, the history of eachb (t) r (t)i ij

species is marked by the occurrence of major events, including speciation events and changes in selective
regime. We call the times at which these events occur “epochs.” The history of the ith lineage consists of a
number, , of sequential branch segments demarcated by epochs (fig. A1).0 1 2 k(i)k(i) 0 p t ! t ! t ! … ! t p Ti i i i

Following Hansen (1997), we will assume that the selection regime, , acting on lineage i is constant with valuebi

over the course of the gth branch segment, that is, for . (Throughout the appendix, we use Lating g�1 gb t ! t ! ti i i

subscripts [i, j, etc.] to denote lineages and Greek superscripts [g, h, etc.] to refer to epochs.) Under this
assumption of piecewise-constant selection regimes, equation (A2) takes the form
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k(i)
g g�1�aT �aT at at gi iE[X (T )FX (0) p v ] p e v � e (e � e )b . (A4)�i i 0 0 i

gp1

With regard to the correlations , it is clear that if denotes the time of the speciation event at whichr (t) sij ij

lineages i and j diverged, then for . Further, let us assume that after diverging, distinct lineagesr (t) p 1 t ! sij ij

evolve independently, so that for . Then, on definingr (t) p 0 t 1 sij ij

, equation (A3) becomesV p Cov [X (T ), X (T )FX (0) p X (0) p v ]ij i j i j 0

2j
�2a(T�s ) �2asij ijV p e (1 � e ). (A5)ij 2a

Note that the dependence of on j is particularly simple. In particular, , where depends only on a.2 ˜ ˜V V p j V Vij ij ij ij

Observe too that expressions (A2)–(A5) are regular at , that is, as , , anda p 0 a r 0 E[X (T )FX (0) p v ] r vi i 0 0

, in agreement with the results for BM.2V r j sij ij

Selective Optima

We view the phylogeny as given. That is, the epochs and branching times are assumed known. To specify agt si ij

model of evolution along this phylogeny, it remains to estimate the parameters. However, as written, the model
has one for each branch and hence more parameters than termini. To reduce the number of parameters thatgbi

must be estimated, we assume that only a small number, r, distinct selective regimes have operated and that each
is defined by a single optimum , . That is, we replace each branch optimum with thegv k p 1, … , r b vk i k

corresponding to the selective regime operative on that branch. In the terminology of our examples, in which we
painted particular branches with the color of their hypothesized selective regime, is the color of the branchgbi

ending in epoch and the set is the palette of colors from which we can choose. To express this ideagt v , … , vi 1 r

mathematically, we posit that each branch optimum depends linearly on :gb v , v , … , vi 1 2 r

r

g gb p b v . (A6)�i ik k
kp1

For our purposes, we can assume that each is either 0 or 1, and for each g and i, there is an index suchg ′b kik

that and for all . Of course, self-consistency requires that whenever lineage i andg g ′ g hb p 1 b p 0 k ( k b p b′ik ik ik jk

j share the branch ending in epoch . To return to the painting analogy, the matrix is the mapping ofg h gt p t bi j ik

the colors onto the branches.
The parameters , together with the selection strength, a, and the drift strength, j, must bev , v , … , v0 1 r

estimated. Maximum likelihood (ML) estimation of these parameters takes a particularly simple form, as we shall
now show.

Maximum Likelihood Estimates

In the following, it will be convenient to make use of matrix notation. Accordingly, we collect our random
variables in the vector X(t) and our quantitative data in the vector x, the components of which areX (t) x pi i

, the observed values of the quantitative character in each species i, , at the end of anx (T ) i p 1, … , Ni

evolutionary process of length . Inspection of equation (A4) in light of equation (A6) shows thattime p T

E[X(T )FX(0) p v ] p W(a)v,0

where and the weight matrix W has entries′v p (v , v , … , v )0 1 r

�aTW p e ,i0

k(i)
g g�1�aT g at ati iW p e b (e � e ), (A7)�ik ik

gp1
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for and . It follows from the multivariate normality of that the likelihood of thei p 1, … , N k p 1, … , r X(T )
parameters a, j, and , given the data , isv X(T ) p x

′ �1˜1 (x � Wv) V (x � Wv)L(a, j, vFx) p exp � .2[ ]N 2N ˜ 2j�(2p) j det V

Maximizing is equivalent to minimizing . We haveL U p �2 logL

12 �1′˜ ˜( ) ( )U(a, j, vFx) p N log 2pj � log det V � x � Wv V x � Wv .2j

Taking derivatives of U with respect to j and , we see that U has a minimum only if and , whereˆˆv j p j v p v

12 ′ �1˜ĵ (a, v) p [x � W(a)v] V (a)[x � W(a)v],
N

′ �1 ′ �1ˆ ˜ ˜v(a) p (W V W)W V x. (A8)

Finding ML estimates for a, j, and is thus equivalent to minimizing the function of one parameterv

2ˆ ˆ ˆ ˜ˆ ˆU(a, j(a, v(a)), v(a)) p N[1 � log 2pj (a, v(a))] � log det V(a). (A9)

Nonlinear optimization of this sort is a well-studied problem, and numerous public-domain algorithms exist for
its solution. Having determined by minimization of equation (A9), one computes and by means ofˆ ˆâ v j

equation (A8). Pseudocode for the fitting algorithm is given below in “Maximum Likelihood Parameter
Estimation Algorithm”; computer code for use with the free software packages R (http://www.r-project.org),
OCTAVE (http://www.octave.org), and the commercial program MATLAB (http://www.mathworks.com) is
available on the authors’ Web site (http://www.tiem.utk.edu/∼king).

Maximum Likelihood Parameter Estimation Algorithm

Given:
1. Data on N extant species

x1 
x p _ . 

x N

2. A phylogeny relating all extant species, that is, epochs and branching times .gt si ij

3. An association painting evolutionary optima onto branches, that is, .gbik

Procedure:
1. Guess a.
2. Compute the weight matrix W from equation (A7).N # (R � 1)
3. Compute the scaled covariance matrix by means ofṼ

�2a(T�s ) �2asij ije (1 � e )
Ṽ p .ij 2a

4. Compute and by means of equation (A8).ˆ ˆv j

5. Compute U using equation (A9).
6. Return to step 2 until the value , which minimizes U, is found.â

7. For , compute and by means of equation (A8).ˆ ˆˆa p a v j
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Notes on the Implementation

Although the formalism described above mathematically specifies the parameter estimation and model selection
procedures, the implementation of the method on a digital computer poses a small number of difficulties.
Estimation of model parameters requires one to minimize a scalar function U (eq. [A9]) over a single scalar
parameter a subject to the constraint . Numerous algorithms for constrained minimization exist in thea ≥ 0
literature and as computer programs. Numerical difficulties arise, however, in the computation of U for very
small and for very large values of a. As —that is, as the OU model approaches BM—the optima ,a r 0 v k pk

, become progressively less identifiable. That is, the likelihood profile in the corresponding direction1, … ,r
becomes flat. Of course, it is then very difficult to estimate reliably these parameters. As a grows very large, on
the other hand—that is, as selection becomes very strong—the influence of all selective regimes other than those
in which the terminal twigs lie becomes progressively weaker. Hence, the estimates of the associated withvk

these regimes become less and less reliable.
To cope with these difficulties, we adopted the following procedure. First, we performed the numerical

minimization on to facilitate estimation when a is small. To avoid the numerical difficulties associatedlog a

with large and small a, we imposed the constraint that in the optimization algorithm itself. The0.001 ! a ! 20
bootstrap confidence intervals of table 4 were computed using those replicates for which the OU(7) model was
preferred to the BM model (using both SIC and AIC; in 84 of 10,000 replicates, BM was preferred). Replicates
that resulted in estimates up against either of the constraints were discarded; when the algorithm returns an
estimated a against one of these constraints, it is to be interpreted as an indeterminate and therefore invalid
result. Of the 10,000 replicates, 236 were such that the lower constraint was effective, and 42 were such that the
upper constraint was effective.

Figure A1: Schematic phylogenetic tree. The epochs and divergence times for lineage are labeled. Ingt s i p 3i ij

this example, the history of lineage 3 is composed of branch segments.k(3) p 3


