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This dissertation investigates articulation and perception of Western Arrernte coronals,

which employ an apical contrast intervocalically but not initially.  The articulatory

study seeks evidence of Polarization or Gestural Economy in the domain of consonant

Place of Articulation.  Polarization holds that adjacent contrasts on a phonetic

continuum are articulated so as to be maximally perceptually distinct.  Gestural

economy contends that articulations embodying harmonious trade-offs between
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articulatory ease and auditory distinctiveness are used at the expense of maximal

distinctiveness, and used repeatedly, maximizing pattern congruity.

The perception study seeks evidence of phonological Cue Licensing, which

highlights the need for auditory distinctiveness, sometimes at the cost of numbers of

contrasts.  Contrast neutralization is predicted where auditory cues are lacking.

Flemming (1997) suggests that the cost of a phonetic solution is a sum of

numerically weighted phonetic constraints.  Domain-specific weighting extrapolates

from this, restricting the hypothesis space for possible sound structures by postulating

that phonetic domains may inherently prefer different weight valuations on constraints.

Previous literature on consonant Place shows clear evidence for gestural

economy, but not polarization.  This study seeks such evidence by quantitatively

characterizing palatographic data.  ANOVA and χ2 analysis demonstrate that alveolar

and non-contrastive apicals are statistically indistinguishable, as are nasal and oral

segments of a given Place.  Use of alveolars over postalveolars in more contexts

indicates re-use of efficient gestures.  Thus, results again provide evidence for gestural

economy, implying that consonant Place gives higher weighting to articulatory ease and

pattern congruity, over auditory distinctiveness.  An implicational hypothesis for further

verification is that languages in which gestural economy strongly constrains consonant

Place will greatly outnumber those in which polarization strongly constrains this

domain.

The perception experiment compares listeners’ identifications of consonants in

V1CV2 versus CV2 contexts.  Cue licensing is strongly empirically demonstrated.

Removing V1 inhibits correct identification of apicals.  Moreover, acoustic analysis of

experimental tokens shows that for apicals, distinguishing acoustic characteristics exist

only within V1.  For laminals, acoustic characteristics within the consonant and/or



xxi

within transitions to both flanking vowels separate contrastive segments.  Thus,

phonotactic distribution of apicals in W. Arrernte relates directly to distribution of

auditory cues.
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Chapter One:  Introduction
1.1  Foreground:  Focus of the present study

In their comprehensive treatment of consonant places of articulation in the

languages of the world, Ladefoged and Maddieson (1996) begin by defining the set of

possible active articulators, and their potential target areas on the upper surface of the

vocal tract.  They then discuss and exemplify each of the articulator-target matches that

serve to differentiate lexical items in languages, and sum up by presenting an exhaustive

matrix of 134 potentially contrastive pairs of places, noting where and why gaps occur.

In concluding this review of the current state of knowledge about places of articulation

in language, they mention some of the phonetic forces which constrain linguistic

articulations.  They end with the following paragraph:

“Ladefoged (1993) has suggested considerations that may be
relevant in the production of some non-modal places of articulation.  His
notion is that in situations where there is a contrast between two similar
articulations, speakers will tend to use more extreme forms of the
gestures involved.  If this view is correct, the situation for articulatory
gestures may be analogous to that described by Keating (1984a) for
Voice Onset Time.  Keating noted that within the continuum of possible
VOTs, languages choose among three modal possibilities:  voiced,
voiceless unaspirated, and aspirated.  She also proposed that there is a
polarization principle by which languages keep adjacent pairs within
these possibilities further apart...  We might also hypothesize that the
same polarization principle occurs in the realization of some differences
in places of articulation.”

The issue of whether the polarization principle affects consonant place of

articulation, or does not apply in this phonetic domain, is one of the subjects of this

dissertation.
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This introductory chapter will first present four overarching forces which shape

the sound structures of languages.  A few examples will follow, showing how phonetic

models have incorporated these meta-principles and attempted to reconcile tensions

among them.  The value of an approach similar to that of Optimality Theory will be

discussed, and the idea of domain-specific weighting introduced.  Returning to

questions at issue here, polarization, gestural economy, and licensing by cue will be

explicated, with evidence for domains in which they seem to apply.  Predictions for the

language investigated here will be treated.  The chapter concludes with a brief outline of

the rest of the dissertation.

1.2  Background:  Situating the problem in context

1.2.1  Meta-Principles

At least as far back as Martinet (1952) linguists have been seeking not just to

describe sounds and their patterning across languages, but to find principled ways of

explaining the sound structures of language.  In studies addressing the forces which

shape cross-linguistic patterns, four phonetic meta-principles repeatedly emerge.  By

analogy with the selection pressures shaping biological adaptation, these principles can

be thought of as ecological pressures to which languages must adapt (Lindblom 1986;

1990, Ladefoged 1996, Maddieson 1997.)  These meta-principles have in turn informed

phonetic theories and models in varying combinations and degrees.

Ease of articulation pressures languages to minimize articulatory effort.  Sounds

used in a language should be easy for its speakers to articulate.  As noted elsewhere

(Lindblom 1983, Flemming 1997), this desirable principle is not specific to language,

but is generally true of human motor behavior (Zipf 1949.)  Corollaries of this principle

correctly suggest that cross-linguistically, there will be more languages with simple
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sounds than with complex ones (Maddieson 1984, Lindblom and Maddieson 1988), and

that segment types will make greater use of “neutral” articulations, while “a smaller

number of segment types (will be) made with what is called displaced articulation,

where the active articulator is displaced from its anatomically neutral position.”  (Laver

1994, p 137.)

Ease of perception (auditory distinctiveness) is another meta-principle.  Since

the goal of language is to transfer information, the contrastive sounds of a language

should be easy for listeners to differentiate from one another.  This principle correctly

accounts for the fact that languages prefer sounds which are auditorily widely spaced

rather than closely spaced (Lindblom 1986), and that, given articulations of roughly

equal ease (e.g. apical dentals and apical alveolars, or laminal dentals and laminal

alveolars), languages will more often contrast articulations which yield greater auditory

differences (i.e. apical alveolars versus laminal dentals, rather than apical dentals versus

laminal alveolars; Ladefoged 1997b.)

A third desirable principle for a well-adapted language involves maximizing the

number of contrasts, in order to allow for a large number of lexical items which sound

sufficiently different from each other.  (Ladefoged 1996, Flemming 1997.)  This

principle correctly predicts that there will be few languages like Hawaiian, which

contrast fewer than ten consonants, and few languages like Abkhaz, which contrast

fewer than three vowels.

The fourth overarching constraint on language is a pressure toward simplicity,

through the use of organizing patterns (Hockett 1963, Ohala 1980, Maddieson 1996,

Ladefoged 1996, Hayes 1999.)  Once again, this is part of a more general human

tendency, in this case to categorize experience.  Ohala points out the “maximum use of

available features” in many consonant systems, and along the same lines, Ladefoged
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reasons that “less strain (is placed) on our cognitive abilities if sounds are organized

into groups that are articulated in the same way” (Ladefoged 1996.)  Maddieson (1997)

discusses the tendency languages have of “replicating motor images” and using

“intersecting repeated characteristics”, so that basic components of articulation are re-

used in an economical way.  Hayes (1999) argues that the language learner builds a set

of features with an eye to formal structural symmetry just as much as phonetic ease:

“Real constraints seldom achieve such a perfect fit (with phonetic ease), rather they

deviate in the direction of structural simplicity.”  (Hayes 1999, section 9.)

The results of such a drive toward what Hockett called pattern congruity can be

seen in the fact that most languages which contain the stops /p/, /t/ and /k/ also contain

the nasals /m/, /n/, and /N/, which differ from these stops in position of the velum, rather

than \µ\, \≠\, \–\ which differ in the position of the velum and also in place of

articulation.  Moreover, Hayes observes that “even though the phonetic mechanisms

needed to produce a voiced intervocalic stop in Korean are not exactly the same for all

the Korean places of articulation” (thus differing in articulatory ease), “the fact that all

of the places participate in parallel in an intervocalic voicing process suggests that

[voice] is an authentic phonological feature of Korean” (Hayes 1999, section 15) and

more germane to our focus here, suggests that [voice] is a simplifying generalization.

1.2.2  Interconnection of phonetics and phonology

While maximizing the number of contrasts might be considered a strictly

phonological principle, the other three principles we have introduced might be expected

to have effects at both phonetic and phonological levels.  Phonetic effects of the drive

toward ease of articulation are widespread, for example in coarticulation processes.

Negative evidence like the cross-linguistic markedness of clicks or the absence of
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articulations like dorsal-velar trills can also be argued to reflect this ecological force,

both in phonetics and in the resulting composition of phonological inventories.  In

addition, the phonotactic behavior of phonological units is affected by this principle; for

instance, the strong cross-linguistic tendency of postnasal stops be voiced (Hayes and

Stivers, in progress) can be attributed to the aerodynamic requirements of voicing.

As regards pattern congruity, the mental features that learners build by

categorizing their experience are phonological, and yet the fact that languages “replicate

motor images” (Maddieson 1997) means that this simplifying force also affects

phonetic implementation.  Turning to auditory distinctiveness, phonological structure is

limited by the auditory ability of listeners to identify the meaningful distinctions in

sounds, and many investigators (Ohala 1980, Steriade 1995, among others) have shown

how auditory phonetic considerations shape phonologies.  Driven by the same principle,

phonetic variability must be limited by the need to faithfully represent contrastive

segments within their appropriate target ranges, so that contrasts can be accurately

retrieved by listeners.  In this way phonology also shapes phonetic implementation

(Keating 1996.)

The fact that these principles affect phonetic as well as phonological patterns of

languages necessitates that phonetics and phonology are closely associated and

mutually limiting.

1.2.3  Conflicting Goals

Though each of the above-mentioned principles governing sound structures is

desirable, these forces have different, often conflicting goals, and cannot all be satisfied

at once.  As has long been recognized, ease of articulation is often at odds with ease of

perception; to the extent that segments are auditorily distinct from each other for
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listeners, speech is effortful and not maximally easy for speakers.  Conversely, the more

the articulators approximate a neutral, resting position, the less distinct from each other

they will be, and the harder listeners will have to work to recover contrastive segments.

Flemming (to appear) points out that the principle of maximizing numbers of contrasts

is also at odds with that of auditory distinctiveness; contrasts cannot be as far apart in a

phonetic space if there are more of them.  The principle of pattern congruity is also

potentially in conflict with auditory distinctiveness; segments of different types often

involve different enhancing characteristics to make them maximally auditorily distinct

(Stevens and Keyser 1989.)  Ease of articulation may conflict with maximizing the

number of contrasts, in that a greater number of contrasts means a greater number of

articulatory configurations to coordinate dynamically, as well as greater precision in

articulations.  Ease of articulation may be in conflict with pattern congruity, as

discussed with respect to the feature [voice] above:  all voiced segments are not

equivalently easy (e.g. it is more difficult to voice [g] than [b]), but it makes for a

simpler mental pattern to have voiced segments behave in similar ways phonologically.

On the other hand, maximizing the number of contrasts is not necessarily in

conflict with pattern congruity, and this pair of principles, more than other pairings,

may be mutually enhancing.  Relationships among these principles are summarized in

Figure 1.1.
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Figure 1.1:  Relationships among four meta-principles governing linguistic sound
structures.  The double-headed arrow links the “harmonious” pair of principles; other
pairings are likely to conflict.

1.2.4  Phonetic Models

As mentioned above, phonetic theories and models have repeatedly referred to

these meta-principles, and linguists have addressed their efforts to how these forces

might interact, be reconciled or dominate each other when in conflict.  Thus, Keating

(1990), in developing her Window Model of Phonetic (Under)Specification, observes

that the spatial range of a particular target is a function of how precise an articulation

needs to be, which is defined by the presence or absence of phonological contrast (thus

the need for auditory distinctiveness.)  Less variability is expected where a contrast

must be maintained.  Where no contrast exists, greater variability can be expected,

because gradient, temporal interpolation (responding to ease of articulation) can step in

to govern implementation.  This “allows an interaction between the constraints imposed
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by phonological contrast and phonetic constraints such as mechanical linkages or

aerodynamic requirements” (Keating 1996.)  In the same vein, Manuel (1990) notes that

“contextual variation is subject to a distinctiveness constraint”, and Cho (1998a)

invokes this interplay to account for differences in the implementation of palatalization

in Korean stops and nasals.

The work of Lindblom and Maddieson (1988) is perhaps the most commonly

cited among linguists investigating the tension between ecological forces affecting

speech.  A frequently quoted statement of theirs suggests that “inventories tend to

evolve so as to achieve maximal perceptual distinctiveness at minimum articulatory

cost” (p. 72.)  They observe that in bending to these pressures, languages tend to

exhaust simple articulations before making use of more elaborated or complex

articulations, and that part of the strategy of using more complex articulations is to be

sure that auditory distinctiveness is retained.  The notion of trade-off implicit here is a

movement away from Lindblom’s earlier hypothesis that “maximal distinctiveness”

shapes vowel systems (Lindblom 1986), toward “optimal” distinctiveness here.

Maddieson (1996, 1997) continues to rebalance the relative weight of auditory

distinctiveness, articulatory ease and pattern congruity, in developing his theory of

gestural economy, which is explained in detail below.  Rather than being “optimal”, he

suggests it is possible for auditory differences among contrastive sounds to be merely

“sufficient”, citing evidence from small vowel systems and tone systems.  Moreover, in

explicating a desideratum of language sounds that he calls “contrastivity”, he suggests

that articulatory distinctiveness, just as much as auditory distinctiveness, is to be desired

for reasons of structural economy.  Thus, he points out that, like sensory patterns, motor

patterns are perceived by the speaker, and must be perceptually distinct to the speaker.

Optimally contrastive units are those that can be “differentiated from each other and
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(be) recognizable when they recur... elements (must have) good characteristic

‘signatures’ in both their motor and auditory patterns so that they may be recognized

and memorized” (p. 634.)

Steriade’s Production Hypothesis (1993, 1995) and similar ideas also represent a

resolution of the tension between these ecological forces.  As Jun (1995) puts it,

“Speakers make more effort to preserve the articulation of speech sounds with powerful

acoustic cues, whereas they relax in the articulation of sounds with weak cues”; or to

paraphrase Kohler (1990, 1991) the more vulnerable targets of place assimilation are

those that are less auditorily salient than others.  The notion is that speakers will

economize on articulatory effort especially where there is not a good return in terms of

auditory contrast.  In support of this, in documenting supraglottal gestural reduction in

Taiwanese stops, Hsu (1998) finds that “only the perceptually less salient non-initial

positions allow ease-of-articulation considerations to override the ease-of-perception

principle, yielding variable articulations across prosodic environments” (p. 2.)  In a

different but related effect of interaction among these forces, Flemming (to appear)

suggests that “a constraint on the minimum distinctiveness that is adequate to support a

contrast can account for the absence of this contrast.”  To paraphrase Steriade (1995),

contrasts will be lost first where they are more difficult to keep, whether the difficulty is

auditorily or articulatorily induced.

1.2.5  Optimality Theory

Each of the models and hypotheses mentioned in the preceding section attempts

to find an optimal solution in terms of ecological forces taken together, rather than in

terms of any single principle.  Such an approach lends itself to constraint analysis along

the lines of phonological Optimality Theory (Prince and Smolensky 1993.)  In fact,
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phonetically grounded constraints are the core of the research program which has come

to be known as “Phonetically-Driven Optimality-Theoretic Phonology” (Kirchner 1998,

Hayes 1999.  See the latter for an overview and references.)

In Optimality Theory, conflicting constraints are ranked, with higher, more

important constraints strictly dominating lower-ranked ones.  Phonological forms that

appear in languages are those violating the fewest highly-ranked constraints.  A crucial

characteristic of OT, and one which will be highlighted here, is that the relative

importance of constraints is flexible.  This allows for cross-linguistic variation:

languages arrange constraints in different ways.

In applying OT to phonetic optimization, Flemming (1997) suggests that a

model that better suits phonetic behavior is one in which constraints do not strictly

dominate each other, but instead are numerically weighted with respect to each other.

The sum of these weighted constraints yields a single, total-cost value; low total-cost

values represent good phonetic solutions.  Taking the gist of Flemming’s idea, we might

apply such a notion to the forces discussed here as follows:

    we (violation of ease of articulation metric)

+ wd (violation of auditory distinctiveness metric)

+ wn (violation of maximization of numbers of contrasts metric)

+ wc (violation of pattern congruity metric)

= cost

where the terms in parentheses are ways of measuring how much a given meta-principle

is violated, and the ‘w’ terms are the different weight factors given to each principle.  A

high weight factor means that it is relatively important not to violate the principle.
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Note that the equation above is overly simplistic, and that each of the meta-

principles could potentially be represented by many constraints.  Conversely, one

constraint might represent more than one meta-principle:  for example, one of

Flemming’s exemplars, “Don’t deviate from targets” could represent perceptual

distinctiveness, pattern congruity, or both.  Furthermore, Flemming mentions that

different speech rates would assign different weight factors to the relevant constraints,

as would different combinations of segments, and possibly even environmental

circumstances.  These variables quickly add complexity, and in the interests of focusing

on the problem at hand, will not be considered in this study.

1.2.6  The Domain-Specific Weighting Hypothesis

Even when we exclude from consideration the many-to-many relationship

between overarching principles and specific constraints, the influence of speech rate,

etc., the number of combinatorial possibilities of such a cost equation is huge.  The

hypothesis space would be usefully restricted if, instead of representing entirely

language-specific compromises among these forces, relative weighting of constraints

could arise at least in part from the principled, inherent preference of certain phonetic

domains for certain ecological forces.  For example, the issue of whether vowel and

consonant inventories are built on the same principles has been debated (Ohala 1980,

Lindblom 1986, Lindblom and Maddieson 1988; Stevens and Blumstein 1975,

Ladefoged and Bhaskararao 1983.)  Principled differences in the behavior of vowels

and consonants would be easily captured by assigning different relative weight factors

to different constraints in the case of vowels versus consonants.  If it is true that vowels

are more naturally defined on auditory rather than articulatory targets, it would seem to

follow that the cost of violating auditory distinctiveness constraints would be relatively
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high.  The implication for a total cost equation would be that constraints involving

auditory distinctiveness would have higher weight factors than those involving

articulatory ease.  On the other hand, consonants are very commonly defined with

regard to landmarks in the mouth.  It may be that in defining consonant place of

articulation, the principle of pattern congruity is more heavily weighted than auditory

distinctiveness.  In this case, constraints on re-use of the same articulatory gestures

would receive high weight factors.

A second example of two phonetic domains in which specific weighting of

constraints might differ is articulatory gestures per se versus the relative timing of

articulatory gestures.  It may be that pattern congruity figures heavily in the former,

while auditory distinctiveness plays more of a role in the latter.  In both of these

examples, a total cost function would provide a way in which the drives to “save on

articulatory effort”, “save on auditory effort”, “use a wide variety of different sounds”

and “re-use features” could come to different compromises in different areas.  We will

refer to this hypothesis that phonetic domains can assign different relative values to

ecological constraints as “domain-specific weighting.”

1.3  “Derivative” Mechanisms:  Polarization, Gestural Economy,

Licensing by Cue

This dissertation will focus on three adaptive phonetic mechanisms, each of

which can be said to derive from consideration of one or more of the four meta-

principles mentioned above. Polarization can be considered a phonetic implementation

principle deriving from the ecological meta-principle of ease of auditory perception; in

response to this force, segments are articulated so as to be maximally perceptually

distinct, as will be explicated below.  Similarly, Maddieson’s articulatory theory of



13

gestural economy is a pair of hypotheses that respond a) to the need for compromise

between articulatory ease and auditory ease, and b) to the drive toward pattern

congruity.  As adaptive mechanisms in language, polarization and gestural economy

make predictions about articulation of speech sounds.  On the other hand, Steriade’s

principle of phonological licensing by cue makes predictions about the phonotactic

distribution of contrastive elements.  This adaptive mechanism responds to the need for

auditory distinctiveness, sometimes at the cost of numbers of contrasts.  Thus, where

there is a relative paucity of auditory cues, contrasts will tend to be neutralized.  A brief

exposition of the three derivative principles follows.

1.3.1  Polarization

The original inspiration behind the polarization principle (Keating 1984a) was

the observation that segments which belonged to the same phonetic categories in

different languages were nevertheless phonetically different from each other.  In

treating the implementation of Voice Onset Time (VOT) across languages, Keating

noticed that firstly, three and only three VOT categories seemed to exist across

languages which had been described:  {voiced}, {voiceless unaspirated}, and {voiceless

aspirated}.  Secondly, irrespective of whether a given language employed two or three

contrasts, only adjacent categories were used.  Thus, Keating suggested that along a

given phonetic continuum, phonological oppositions are instantiated by a fixed number

of phonetic categories.  Moreover, phonological oppositions can be mapped to different

phonetic categories in different languages.  Keating observed that English and Polish

word-initial stops both employ two of the three contrastive types along the VOT

continuum, and both make use of the {voiceless unaspirated} category.  However, in

Polish the opposing stop is in the {voiced} category, whereas in English the opposing
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stop is in the {voiceless aspirated} category, as shown schematically for labials in

Figure 1.2.

Voice Onset Time continuum------------------------------------------------------------->
Phonetic
Category

{voiced} {voiceless
unaspirated}

{voiceless
aspirated}

Polish b --->p
English b9<--- pÓ

Figure 1.2:  Schematized VOT in Polish and English word-initial labial stops

The central idea behind polarization is that once phonetic categories have been

chosen to instantiate the phonological oppositions in a language, actual phonetic values

will be positioned within those categories so as to maximize the difference between the

contrastive segments.  Thus, the stops in the {voiceless unaspirated} category in English

and Polish are not identical, but are displaced with respect to each other, as shown in

Figure 1.2.  This has the effect of maximizing the difference with the other member of

the contrastive pair; the {voiced} stop in the case of Polish, and the {voiceless

aspirated} stop in the case of English.  Keating makes no claim about displacement of

the end categories; her focus is the displacement observed in the {voiceless

unaspirated} category.

Note that polarization implicitly places a higher value on perceptual ease in

distinguishing among contrasts than on articulatory ease in producing them, in the sense

that articulations will be polarized even if this means articulations are more displaced

from a neutral vocal tract position, or means storing more than one articulatory gesture

for a contrast.  (“Gesture”, as in the usage of Maddieson 1996, here refers to the

characteristic path of an articulator to its target, rather than to a phonological feature.)
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As a point of clarification, it should be mentioned that while polarization can be

considered a subset of dispersion theory (Lindblom 1986, 1990; Flemming 1997)

Keating’s usage of the term strictly involved implementation within the boundaries of a

given phonetic category, while dispersion theory refers to separation of segments within

the phonetic space as a whole.  In general, we will conflate these two ideas in our

discussion; the important aspect here being separation of contrasts along a given

phonetic dimension.  However, we will exclude from our understanding of polarization

the concept of enhancement, defined in Stevens and Keyser’s sense as the use of

secondary features to separate contrasts.

Considerations of perceptual distinctiveness, which can be inferred where there

is evidence of polarization, may play a dominant role in the implementation of relative

timing of gestures (of which Voice Onset Time may be considered a specific case) and

in the distribution of most vowel systems within the auditory space.  Hsu and Jun

(1998) extend Keating’s finding of polarization in VOT to Taiwanese stops, in which all

three phonetic categories ({voiced}, {voiceless unaspirated}, {voiceless aspirated}) are

used contrastively.  They find that in prosodically strong positions, the end categories

{voiced} and {voiceless aspirated} are polarized, as compared with prosodically weaker

positions.  That is, at the beginning of a syllable (and cumulatively more so at the

beginning of a word or intonational phrase), {voiced} stops have longer lead times and

{voiceless aspirated} stops have longer lag times.  Interestingly, in this case the middle

category ({voiceless unaspirated}) remains unaffected in different prosodic positions,

presumably to remain equidistant from both of the end categories.

Again in the temporal domain, Cho (1998a, 1998b) finds in an instrumental

articulatory study that Korean alveolar stops and nasals behave differently before /i/ in

non-derived environments.  The /t+i/ sequence allows only minimal intergestural
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overlap, whereas the /n+i/ sequence allows a great deal more overlap.  This difference

in behavior can be explained by reference to polarization.  An important fact about

Korean phonology in this regard is that a contrastive segment /t∫/ exists, but no

corresponding contrastive nasal \≠\ exists.  Thus, /t+i/ and /t∫+i/ must be kept polarized

in their phasing, so as to remain perceptually distinct.  In contrast, the alveolar nasal is

not constrained by a neighboring contrastive palatal(ized) segment, and can overlap to a

much greater degree.

It should be mentioned that, because relative timing of gestures is strongly

correlated with relative magnitude of gestures, we could expect to find polarization in

magnitude of gestures as well; i.e. greater magnitude in strong positions, less in weaker

positions.  Such a result has been borne out for a number of languages (Hsu and Jun,

1998; Fougeron and Keating 1997.)

Large and small vowel systems will be discussed together below.

1.3.2  Gestural Economy

Gestural economy (Maddieson 1996) represents another view of the possible

relationship between phonological patterning and phonetic implementation.  First, high

value is placed on the use of inherently efficient gestures; in the terms presented here,

these are gestures for which there is a relatively harmonious (i.e. low-cost) trade-off

between the meta-principles of ease of articulation and auditory distinctiveness.

Secondly, high value is placed on re-use of these efficient gestures, so that speakers

need not internalize a greater number of motor programs than is necessary to convey the

phonological oppositions of their language.  This second point reflects the ecological

constraint of pattern congruity.
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Maddieson presents instrumental evidence for the use of inherently efficient

gestures from Sele and Ewe, two languages of West Africa.  Sele employs a single

labiodental fricative which does not contrast with another labial fricative.  Ewe, on the

other hand, has a labiodental fricative in contrast with a bilabial fricative.  On the

continuum of upper lip height, Maddieson establishes instrumentally that in the Sele

labiodental, the upper lip is in a neutral position, neither lowered nor raised.

Elsewhere, Maddieson (1984) gives evidence that labiodental fricatives are frequent

members of consonant inventories, and proposes that this is because they require

“precise positioning of only one active articulator” and “a relatively small movement”,

while at the same time remaining acoustically distinct from other fricatives (Maddieson

1996.)  Thus, they are inherently efficient.

In Ewe, the bilabial fricative shows upper lip lowering as both lips approach

each other for the constriction.  However, even though it contrasts with this bilabial, the

Ewe labiodental fricative is not appreciably different from the Sele labiodental.  (The

distribution of these segments is schematized in Figure 1.3.)  Maddieson takes this to

constitute evidence that in Ewe, an inherently efficient segment is used over a

potentially more distinctive one because the value of efficiency outweighs maximal

distinctiveness in this case.  (“Maximal distinctiveness” can refer to either perceptual or

articulatory distinctiveness, for the sake of the present argument.)  Recall that under

polarization, one would expect Sele and Ewe labiodentals to differ; the Ewe labiodental

would involve a higher lip position, in order to maximize its difference from the

bilabial, as was previously postulated by Ladefoged (1990).
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Upper lip height----------------------------------------------------------------------------->
Phonetic
Category

{low} {neutral} {raised}

Sele f
Ewe F      f-->f

Figure 1.3:  Schematized upper lip height positions for Sele and Ewe labial fricatives.
(Italicized symbol shows hypothesized position under polarization.)

Maddieson cites two types of evidence in support of re-use of gestures.  First, as

mentioned above, the fact that languages very commonly employ stops, nasals and

laterals having the same places of articulation is, in Maddieson’s view, an indication

that economical component “motor images” are being re-used, minimizing the number

of articulatory motor programs needed to implement phonological contrasts.  However,

here Maddieson’s evidence comes from the UCLA Phonological Segment Inventory

Database (Maddieson 1984) in which segments are categorized phonologically;

phonetic detail is purposely underplayed.  Thus, it remains an empirical question for the

majority of languages whether stops and nasals, for instance, are articulated in a non-

distinguishable way, or whether they are articulated with distinct motor images, but

simply categorized together phonologically.  This point is schematized in Figure 1.4.

Given these stops:
p t k

Nasals:
Pattern congruity m n N
Nasals:
Different gestures µ = –

Figure 1.4:  Stops and Nasals––Economy of number versus use of different gestures for
different manners of articulation
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A more empirically robust type of evidence for re-use of gestures involves

doubly articulated stops.  Maddieson (1993) shows with the use of electromagnetic

articulography that labial-velar consonants in Ewe are made with the same component

gestures as single labials and single velars.

Harmonious trade-offs between the forces of auditory distinctiveness and

articulatory ease, which can be inferred where there is evidence of use of efficient

gestures, may govern very small vowel systems, as discussed immediately below.

Pattern congruity, evidenced by re-use of gestures, may govern tone systems, as

discussed in the following paragraph.

Contrastive members of large vowel systems seem to show evidence of

polarization when compared with members of small vowel systems.  Maddieson (1997)

compares /i/, /a/ and /u/ in Bavarian German, which has a large number of contrastive

vowels, with /i/, /a/, and /u/ in Tausug, for which these are the only contrastive vowels.

In Bavarian, average formant values for /i/, /a/ and /u/ are more widely dispersed from

each other than are average formant values for the three Tausug vowels:  this may be

due to the fact that the three Bavarian vowels must each contrast with closely

neighboring segments, and in response to this, considerations of auditory distinctiveness

take precedence.  In Tausug, the three vowels are substantially closer together in the

vowel space, presumably because it is not so difficult to separate only three vowels;

thus, considerations other than maximizing auditory distinctiveness take precedence.  In

this case, the use of more efficient, less extreme gestures could be seen to weigh more

heavily.  The differences between large and small vowel inventories may reflect

different relative weightings among the meta-principles of ease of articulation, auditory

distinctiveness and maximizing the number of contrasts.
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Evidence from both Asian and African tone systems seem to reflect a high

relative weighting of pattern congruity.  Rose (1993) compares normalized Shanghai

and Zhenhai tones over multiple speakers.  He finds that, contrary to expectation, “the

phonetic aspect of the degree to which speakers’ normalized values cluster (reflected in

the mean normalized standard deviation) is independent of the number of tones in the

system...  Shanghai, with five tones, has the same degree of clustering as Zhenhai, or

North Vietnamese, with six” (p. 217.)  Such clustering, unaffected by number of

phonological tones, implies re-use of an articulatory and/or auditory pattern, rather than

a drive toward auditory distinctiveness.  “Secondly, it might be thought that lack of

contrastivity in tone features might result in greater between-speaker latitude in tone

production.  (However), speakers are producing their tones with considerable precision,

irrespective of the number of tones, or distinctive features, in the system”  (p. 218.)

Maddieson (1991) shows a similar situation in comparing tones in Hausa and Nupe.

Rather than showing different distributions of tones in response to different numbers of

contrasts, Maddieson finds that two tones in Hausa and Nupe are essentially identical,

and that Nupe adds a third contrastive tone without adjusting the other two.  Thus, at

least for these languages, tones seem to be governed more heavily by considerations of

pattern congruity than perceptual distance.

1.3.3  Licensing by Cue

As mentioned earlier, Steriade’s principle of licensing by cue affects phonotactic

patterns of segments:  contrasts need to be distributed in a way that does not overtask

the ability to discriminate between sounds.  As Steriade puts it, “Avoid degenerate cues:

Do not deploy a feature in positions where its defining cues are necessarily absent or

diminished.”  Thus, in languages such as English and Guarani, stressed syllables
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support more vowel contrasts than stressless syllables.  In English, the back/round

contrast in vowels disappears in stressless syllables; in Guarani the nasality contrast in

vowels disappears in stressless syllables.  Steriade maintains that the reason for this is

that the longer duration concomitant with stress facilitates both perception and

production of these contrasts, whereas unstressed syllables do not allow enough

phonetic material to reliably support production or perception of such contrasts.

1.4  Consonant Place of Articulation

In our discussion so far, we have not yet seen examples of polarization in the

domain of consonant place of articulation (hereafter Place.)  However, Ladefoged and

Maddieson (1996) touch on several tentative examples in which this may be the case.

They note early reports of polarization of contrastive labials in Ewe, auditory evidence

for polarization of contrastive velars in Yanyuwa, and visual evidence for polarization

of nasals as compared with stops in Malayalam.  Instrumental work has since shown

that Ewe seems to be better modeled by gestural economy, as discussed above.

Moreover, Breen (personal communication) is doubtful of the phonological analysis of

front and back velars as places of articulation in Yanyuwa, and suggests that the front

velar is instead a sequence of prepalatalized vowel and velar.  Evidence for the

Yanyuwa case remains as yet unclear.

The Malayalam case does seem to be true of several speakers.  Since, in the

crucial respects, Malayalam has a similar phonology to the language in focus here, we

will be able to investigate a parallel case comparing stops and nasals.  Thus, to restate

more precisely the first research question at issue here, we wish to ask whether

polarization is preferentially weighted vis-a-vis other constraining factors, in the

phonetic domain of consonant Place.
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1.5  Western Arrernte:  Predictions

The language examined here is Western Arrernte, an Arandic language of

Central Australia, which makes use of four contrastive coronal places of articulation in

the stops, nasals, laterals and prestopped nasals.  Coronals will be discussed in more

detail in Chapter Two; briefly, they are sounds made by an articulation of the tongue tip

or blade with the upper surface of the vocal tract.  Common impressionistically-based

descriptions of tongue configurations for these four places of articulation are shown in

Figure 1.5.

<––––––––––––Place of articulation––––––––––––>

Apicals

Laminals

Conventional
Australian

Nomenclature

Laminal
Dental

Apical
Alveolar

Apical
Post-alveolar

Laminal
Palato-
alveolar

Features
[-apical]

[+anterior]
[+apical]

[+anterior]
[+apical]

[-anterior]
[-apical]

[-anterior]

Figure 1.5:  Impressionistically-based descriptions of tongue configurations for W.
Arrernte coronals

Butcher (to appear) instrumentally verifies stop articulations for one speaker of

Eastern Arrernte, who employs an apical alveolar /t/, sublaminal prepalatal /Ê/, laminal

interdental /t1/([t™]), and a laminal alveolar-postalveolar [t4].
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Intervocalically, this four-way contrast holds.  However, in word-initial position,

there is no place contrast between the apicals.  Examples of words showing the coronal

contrasts and their distribution are shown for stops and nasals in Table 1.1.  The non-

IPA symbols ‘T’ and ‘N’ are used to refer to word-initial non-contrastive apicals.

Table 1.1:  W. Arrernte stops and nasals, word-initially and between vowels

Coronal places of articulation
Bilabial Laminal

Dental
Apical

Alveolar
Apical
Post-

alveolar

Laminal
Palato-
alveolar

Dorsal
Velar

Stops p t1 t Ê t4 k
Word-
initially

p´t1´
pouch (n)

t1´m´
grind (vt)

T´p´
back (n)

t4´n´
friend (n)

k´p´
firestick (n)

Between
vowels

map´
many (n)

at1´
I (pr, tr.)

l4at´
today (n)

kwaÊ´
egg (n)

kwat4´
water (n)

mak´
elbow (n)

Nasals m n1 n = n4 N
Word-
initially

'm´=´
veg. food

(n)

'n1´m´
rain is

falling (vt)

'N´m´
is sitting (vi)

'n4´lkN´
steal (vt)

N´m´
fly (n)

Between
vowels

mam´
sore (n)

lan1´
there-mid

(n)

man´
money (n)

a=´
ground

(n)

mpan4´
marriage

(n)

paN´
blind (n)

Polarization makes two predictions about the distribution of segments on the

place continuum.  First, the two contrastive apicals will be widely distributed with

respect to the non-contrastive apical, in order to maximize distinctions between them.

The advantage here is that listeners economize on perceptual effort in recognizing the

contrastive segments.  The disadvantage is that speakers must control three different

gestures for apical segments, instead of just two, which is high-cost in terms of pattern

congruity.
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Place dimension ---------------------------------------------------------------------------->
Non-contrastive
apical segment T

Contrastive
apical segments t<---------------------- • ---------------------->Ê

Figure 1.6:  Arrernte Polarization Scenario--contrastive versus non-contrastive apicals

A second prediction involving polarization compares stops at each place of

articulation with their corresponding nasals.  Ohala (1980, 1990) has presented evidence

that nasals are less auditorily robust than stops because they do not have as many

acoustic cues.  In response to this, it may be that nasals are polarized from each other on

the place continuum vis-a-vis stops, in order to redress this relative perceptual

deficiency.  Anecdotal evidence for such a possibility has been reported in Malayalam,

which, like Arrernte, employs four contrastive oppositions for tongue-palate

articulations in both stops and nasals.  Ladefoged and Maddieson (1996) observe that

for some speakers of Malayalam, dental nasals are articulated as interdentals, while

dental stops are articulated as post-dentals.  For these speakers, dental nasals are

articulated further forward on the place continuum than dental stops.  In Figure 1.7,

positions for the other stops and nasals have been hypothesized, and are shown in

italics, but only the dentals are explicitly mentioned by Ladefoged and Maddieson.

Place of articulation continuum--------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t Ê t4
Nasals n1  n    = n4

Figure 1.7:  Polarization scenario:  places of articulation for some speakers of
Malayalam
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Gestural economy makes different predictions in both of these cases.  In the case

of contrastive versus non-contrastive apicals, re-use of gestures suggests that an

articulation will appear in both contrastive (word-medial) and non-contrastive (word-

initial) environments.  That is, an articulation representing the non-contrastive apical

will reappear as one of the contrastive apicals, as shown in Figure 1.8.

Place dimension ---------------------------------------------------------------------------->
Non-contrastive
apical segment T

Contrastive
apical segments                    t |-----------------| Ê

or

Non-contrastive
apical segment T

Contrastive
apical segments                                          t |----------------------| Ê

Figure 1.8a (top) and 1.8b (bottom):  Arrernte Gestural Economy Scenario--contrastive
versus non-contrastive apicals

Moreover, use of efficient gestures assigns the segment that is less displaced

from a neutral position to the greater number of contexts (i.e. the scenario in ‘8b’, in

which it is the alveolar that is reused.)

The advantage here is that speakers economize on motor programming; only

two oral configurations exist for apical segments.  The disadvantage is that the

contrastive articulations are not so widely divergent on the place continuum, which is

high-cost in terms of auditory distinctiveness.

As to the stop-nasal comparison, re-use of gestures also predicts that nasals will

differ from stops in the position of the velum, but will be identical in terms of the

gestures used to achieve the oral configuration, as schematized below.
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Place of articulation continuum-------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t Ê t4
Nasals n1 n = n4

Figure 1.9:  Gestural economy:  schematized coronal places of articulation in Arrernte

While licensing by cue does not make predictions about the articulation of

Arrernte coronals, it does make predictions about the distribution of coronal contrasts.

We have shown above that Arrernte apicals are neutralized initially; cue licensing

allows a principled insight into why they are neutralized in this position.  Many

investigators have noticed asymmetries between offset formant transitions from a vowel

preceding a postalveolar, and onset transitions to a following vowel.  While formants

2,3 and 4 often have a common locus in the former, they are usually quite separate in

the latter.  In short, alveolar and postalveolar apicals look different in their formant loci

at preceding vowel offset, whereas they look quite similar in their loci at following

vowel onset.  For this reason, many investigators have suggested that preceding vowel

offset loci are a critical cue to postalveolar apicals, and that absence of a preceding

vowel would render a contrast between alveolars and postalveolars imperceptible.  In

what, to our knowledge, is the first study using perception tests with native speakers of

an Australian language, we will investigate this hypothesis.  This is the second focus of

this dissertation.

1.6  Organization of the Dissertation

Chapter Two presents a brief overview of coronals, including current

understanding of their historical development in Australian languages, relevant W.

Arrernte phonology and a summary of previous instrumental studies of coronals
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involving an apical/laminal distinction.  Chapter Three presents a multispeaker

instrumental study of the articulation of W. Arrernte coronals, looking for evidence of

polarization or gestural economy.  Chapter Four presents a perceptual study of W.

Arrernte coronals; in particular the perception of contrastive and non-contrastive

apicals.  Chapter Five summarizes results and makes conclusions.
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Chapter Two:  Apicals and Laminals
This chapter begins with a definition of apical and laminal articulations, and

goes on to summarize views about their development in Australian languages.  Brief

relevant background information on Arrernte phonology is followed by a summary of

instrumental studies of Australian coronals.

2.1  Multiple Coronals in the World’s languages

As mentioned in Chapter One, coronals will be understood to be sounds using

the tongue tip and/or blade as the active articulator.  Coronals as a whole are not

difficult to define, since the tongue tip and blade taken together can be safely said to

involve no more than the front third of the tongue (i.e. that portion excluding the body

and root.)  However, taken separately, as they must be in a discussion of languages

making use of an apical/laminal contrast, “tongue tip” and “tongue blade” are not so

easily defined; phoneticians have offered quite a few different descriptions of these

articulators.  The lack of perfect agreement is not surprising, since the tongue is a mass

of muscles without many landmarks.  A British tradition (e.g. Catford 1977) defines the

tip to include only the point along the rim of the tongue at the midsagittal line.  An

American and Australian tradition (e.g. Butcher to appear) defines the tip as this same

point along the rim, plus 5 mm on the upper and lower surfaces of the tongue, in the

midsagittal line.  Dart (1991) notes that in apical articulations, “only a very fine line of

contact is visible, and this on the very tip of the tongue.”  She employs “upper apical” to

designate cases “where it is not the rim, but the upper surface of the apex which has

made contact.”  Ladefoged and Maddieson (1996) define the tip to include the

midsagittal point along the rim, plus about 2 mm in the midsagittal line, but only on the

upper surface of the tongue.  Since this last definition affords us the most specific
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terminology, we will provisionally use it here.  In each of the three types of

terminology, “subapical” is used to refer to the portion of the underside of the tongue

which is not included in the “tip.”

Catford defines the tongue blade to include an area 10 to 15 mm back from the

rim along the upper surface, in the midsagittal line.  Butcher defines blade to mean the

upper area extending in the midsagittal line from 5 mm to 25 mm back from the rim.

Keating (1991) supports the latter definition, on the basis that unambiguous

([+anterior]) coronals use this area of the tongue.  However, tongue sizes vary.

Moreover, the tongue is pliant and can be stretched or contracted.  These considerations

make the regions of the tongue elusive when defined in millimeters.  Ladefoged and

Maddieson (1996) suggest that the most useful definition for the blade is in relation to

other landmarks in the mouth; they propose that the center of the blade be considered

that portion of the tongue which lies directly below the alveolar ridge when the tongue

is at rest, and that the back edge of the blade be delimited by the position of the

frenulum.  Though this may still not define precisely the same area of the tongue for

different speakers, it is likely to be a safer way to define tongue areas than in absolute

terms, and will be used here.

Languages with more than two distinctive coronal stop places of articulation are

rare.  In UPSID (Maddieson 1984, Maddieson & Precoda 1992), a proportional

sampling by family of phonological inventories for the world’s living languages, the

great majority (81.42%) use a single place of articulation for coronal stops.  A further

14.82% have coronal stops at two places.  Only 3.54% use three or more distinctive

coronal places for stops.  (This accounts for 99.78% of languages in UPSID.  One

language, Hawaiian, has no contrastive coronal stop places of articulation, which brings

the total to 100%.)  This rare pattern occurs most commonly in the Australian language
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families; of the 3-coronal languages reported in UPSID, 10 of 12 are Australian.  Of the

4-coronal languages, all exemplars are Australian.

While rare elsewhere, multiple coronal contrasts are the norm for Australian

languages.  Languages making use of up to four meaningfully distinct coronals are

analyzed as using two feature oppositions to create contrasts.  Thus, [+anterior]

segments are articulated in front of the alveolar ridge, while [–anterior] segments are

articulated at or behind the alveolar ridge.  On the other dimension, [+apical] segments

are articulated with the tongue tip, while [–apical] segments are articulated with the

tongue blade.  W. Arrernte has the 4-way contrast (refer to Figure 1.5 above.)  Table 2.1

shows different conventions for symbolizing these contrasts, for stops.  Symbols are

analogous for nasals and laterals.

Table 2.1:  Symbols used to refer to apical and laminal coronal stop contrasts

Feature
classifications

[-apical]
[+anterior]

[+apical]
[+anterior]

[+apical]
[-anterior]

[-apical]
[-anterior]

Conventional
Australian

nomenclature
laminal
dental

apical
alveolar

apical
postalveolar

laminal
palatal

IPA symbol t1 t Ê t4
Common Australian

Writing System
th t rt ty

Transcriptions in this thesis will use the International Phonetic Alphabet.

Moreover, although many traditional descriptions of coronals use terms which refer

only to the passive articulator, here both active and passive articulators will be named

wherever necessary, to avoid a priori assumptions about the association of place of

articulation with tongue articulator.



31

2.2  Australian historical phonology:  apicals and laminals

Australian languages can be divided into “single” and “double” apical languages

(languages containing either one or two apical phoneme series) as well as into single

and double laminal languages.  The number of coronals in proto-Australian (pA) is still

under debate.  In one scenario, pA contained one apical stop phoneme and one laminal

stop phoneme, and analogous nasal and lateral series.  In the descendant languages, one

or both of these phonemes underwent a split (allophones which had been conditioned by

different vowel environments lost those environments when distinctive vowels

underwent mergers, for instance) to yield three or four contrastive coronals in the

phonologies of some languages.  In another scenario, pA contained a richer system of

consonants (two laminals and two apicals) and a poorer system of vowels.  As acoustic

differences were reanalyzed and attributed to vowels, coronal contrasts merged in some

languages to yield only two or three contrastive units.

For laminals, Dixon (1970) adduces evidence for the first scenario above.  He

concludes that pA began with one laminal, which had a laminal palatal (or laminal

palatalized) allophone before the high front vowel, and a laminal dental allophone

elsewhere.  Dixon (1980) extrapolates the historical split scenario to apicals, although

he stresses (personal communication) that the case is less clear.  Dixon finds for

Warrgamay that apical postalveolars occur with greater frequency following the vowel

/u/ than elsewhere, which may be a relic of pA allophonic distribution.  However, this

generalization does not hold for other Australian languages, and for Wakaya, the

situation may be reversed; apical alveolars may follow /u/ more often than apical

postalveolars do (Breen, personal communication.)  There is still not a clear mechanism

by which the apicals can be argued to have developed from a single series.
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A second possibility is that a pA four-way coronal contrast underwent mergers

in some languages.  In this scenario, the finer-grained contrast may initially have been

among coronals, instead of vowels, with pA having only three vowels, or instead, a high

vowel, a low vowel, and contrastive rounding on consonants.  Distinctions among the

coronals could have been reinterpreted as belonging to surrounding vowels, yielding

more vowel distinctions and fewer coronal distinctions in some languages.  Besides the

current height-only distinction in Arandic languages such as Kaytetye and Anmatyerre,

support for this “many-coronals/few vowels” analysis of pA comes from vowel

harmony facts in Warlpiri and Warumungu, spoken to the north of the Arandic family.

In these languages, values for the features Round and Back spread from suffix to verb

root, implying a point at which /i/ and /u/ may have been conditioned allophones.  In

Warlpiri the following alternations exist:  (for further detail see Evans, 1995):

kit4i-n4i kit4i-kaña kut4u-n4u
throw   (nonpast) throw   (irrealis) throw      (past)

Breen (1997) suggests that the time depth for pA may be sufficient to allow for

cyclic historical changes.

“The fact that there are single-apical languages in which the
apicals are alveolar (in much of eastern Australia) and others in which
they are typically retroflex (e.g. Karrwa and Wanyi) suggests that our
present single-apical languages do not just continue an original situation.
Perhaps the best we can do is establish a minimal phoneme set:

b g d j
m ng n ny

l
w r y
u i a
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and list those additions that seem to be widespread enough or common
enough to be thought of as belonging to the regular cycles, including, say:
splitting of /d/--> /d/ and /rr/, merging of /d/ and /rr/, development/loss of
a laminal split, development/loss of an apical split, development/loss of
extra laterals, development/loss of lenition and a voicing distinction...”

2.3  Relevant Western Arrernte Phonology

Arrernte (also spelled Aranda and Arrarnta) is spoken by up to 5000 people in a

continuum of dialects within a 300 km radius of Alice Springs in Australia's Northern

Territory.  Western Arrernte is spoken by an estimated 2000 people in an area

approximately bounded by Papunya and Haasts Bluff to the northwest, Areyonga to the

southwest and Alice Springs to the east.  (Refer to map, Figure 2.1.)  The Arandic

languages are considered a healthy group, by Australian standards:  children are still

learning them as first languages.

W. Arrernte itself had two recognizably different dialects until recently:  the

MacDonnell Range Tywerretye (“Tjorritja”) dialect has all but disappeared; the

Hermannsburg dialect is spreading into the MacDonnell Range area.  Tywerretye was

more like Eastern and Central Arrernte in containing a preponderance of vowel-initial

words.  The Hermannsburg dialect, like Pertame (a dialect of Southern Arrernte), has a

much greater tendency toward consonant-initial words.
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Figure 2.1:  Current Distribution of Central Australian Languages (after Hobson, 1990.
Used by permission.)
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2.3.1  Consonants

The W. Arrernte consonant inventory is shown in Table 2.2 below, while words

illustrating the consonant phonemes are shown in Table 2.3.

Table 2.2:  W. Arrernte consonant phonemes
(after Wilkins 1989, Breen 1990, Butcher to appear)

Bilabial Laminal
Dental

Apical
Alveolar

Apical
Post-

alveolar

Laminal
Palato-
alveolar

Dorsal
Velar

Stops IPA p t1 t Ê t4 k
Orthog p th t rt ty k

Nasals IPA m n1 n = n4 N
Orthog m nh n rn ny ng

Pre-
stopped

IPA pm t11n1 tn Ê= t44n4 kN

Nasals Orthog pm thn/tnh tn rtn tny kng
Laterals IPA l1 l l4

Orthog lh l rl ly
Approxi

mants
IPA (w) ’ j w

or V
Orthog w r y w

Tap IPA |
Orthog rr

With regard to the pre-stopped nasals, it should be mentioned that “nasally

released stops” describes the phonetics of these segments more accurately.  However,

since they are associated with historical nasals, they will be called “pre-stopped nasals”

here.  These segments have also been written by some as M, N1, N, etc. but capitals in

this thesis will be used to refer to non-contrastive apicals.
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Table 2.3:  W. Arrernte consonant phonemes in intervocalic position

Bilabial Laminal
Dental

Apical
Alveolar

Apical
Post-

alveolar

Laminal
Palato-
alveolar

Dorsal
Velar

Stops
a!_´

map´
many (n)

at1´
I (pr, tr.)

l4at´
today (n)

kwaÊ´
egg (n)

kwat4´
water (n)

mak´
elbow (n)

Nasals
a!_´

mam´
sore (n)

lan1´
there-mid

(n)

man´
money (n)

a=´
ground (n)

mpan4´
marriage (n)

paN´
blind (n)

Pre-
stopped
Nasals
a!_´

 (i⁄_´)

apm´
snake (n)

l1at1n1i|´m´
multiply

(vi)

atn´
dung (n)

kaÊ=´m´
wait to kill
someone

(v)

it4n4´
dead (n)

akN´|´
angry (n)

Laterals
a!_´

al1´
nose (n)

pal´
wrong (n)

wañ´
house (n)

wal4´
leafy

branches (n)
Approxi
mants
a!_´

(aw´
yes)

pa’´
penis (n)

taj´
moon (n)

aw´
yes

Tap
a!_´

a|´
kangaroo

(n)

2.3.2  Vowels

Vowel phonology in Arandic languages is as yet imperfectly understood.  An

emerging analytical consensus, following Breen (1990), suggests that W. Arrernte has

three vowel phonemes varying in height:  \i\, \´\, \a\; and that contrastive rounding is

associated with some syllables, to yield rounded vowels (allophones of \´\.)  Butcher (to

appear) notes that in general, as compared with English, the peripheries of the vowel

space seem to be underused in Australian languages with small vowel systems.  This

observation is reminiscent of that made by Maddieson for Tausug, discussed in Chapter

One above.  However, within the space that is used, two of the W. Arrernte vowels are
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extremely variable in their realization.  An impressionistic vowel space for W. Arrernte

is shown in Figure 2.2 (cf. Wilkins 1989 for E. Arrernte.)

\´\

\a\

\i\

\´\

σ

w

Figure 2.2:  Author’s impressionistic vowel space for W. Arrernte.  The parallelogram
shows the allophonic range of unrounded \´\, while the high back area shows the range
for rounded \´\.

Maddieson (personal communication) has pointed out that (E.) Arrernte vowels

show less actual formant variation than English-speaking linguists tend to transcribe;

there is a danger that English listeners, with their fuller vowel systems, are prone to

overdifferentiate in their perception of these vowels.  With this caveat, major allophonic

tendencies are described below.

The high vowel varies in quality from [E] to [i].  Breen suggests that lower

allophones ([E] or [I]) appear in the environment of labials and [+anterior] coronals.

Thus:

labial: \'t1ip´\ = ['t1Epå] ‘bird’

laminal dental: \'il1t11´\ = ['El1t1´]~['Il1t1´] ‘house’

apical alveolar: \'itn´\ = ['Etna]~['Itnå] ‘they’



38

Before velars and [–anterior] coronals a higher allophone is used.  Thus:

apical postalveolar: \in'tiÊ´\ = [In'diÊå] ‘rotten’

laminal palatoalveolar: \'it4´\ = ['it4a] ‘nothing’

dorsal velar: \'tniNk´\ = ['tniNkå] ‘many’

However, it must be said that some lexical items seem to be more stable in their

allophonic usage than others.  Thus, the author has not heard variants for \'t1ip´\ ‘bird’

involving other vowels than [E] (although higher variants can occur before labials:

\i'palt4´\ = [i'balt4a] ‘friend’, \'ip´Ê´\ = ['ip´Êå] ‘hole’.   On the other hand, as noted above,

the words for ‘house’ and ‘they’ do use a range of allophones varying in the height of

the initial vowel.  Wilkins (1989, Chapter 2, pg. 3) mentions the same “problematic”

behavior of vowels in E. Arrernte as well:

It is true, for instance, that in a majority of uses the /i/ in \it´m´\ 'is
cooking' and \il´m´\ 'is telling' is pronounced [i] and [I] respectively.
However, even in carefully produced citation forms, some speakers
may use [I] for the former and [i] for the latter. Thus the association of
a particular allophone with a phoneme in a specific environment may
be merely a statistical correlate.  Similarly, \´\ before \j\ is realised by a
range of pronunciation between [e] and [i], while /i/ before \j\ is always
[i].  Here we have an example of a breach of the biuniqueness principle
in classical phonology (see Lass 1984:27-30).  Just hearing [i] in a
form, one would be unable to assign the phone definitively to either /i/
or \´\, but knowing the range of pronunciations for a form allows one
to determine, unambiguously, the particular phoneme.

In contrast to /i/ and \´\ (the latter is discussed immediately below), the vowel /a/

is restricted to a fairly small space.  It usually has the quality [a], though it may be

shorter and more centralized [å] when unstressed.   Some /a/ vowels are phonetically

long:  phonologically, contrastive length for W. Arrernte /a/ is in a transitional phase

(Breen, personal communication.)  The long vowel /aa/ derives historically from the
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sequence \aV´\; the phoneme \V\ is still present in other dialects, but has been

completely lost in W. Arrernte.

The mid vowel /´/ is extremely variable, both in height and backness.  Again,

allophonic variation for \´\ is not fully understood.  Detailed, but cautious, statements of

allophone distributions and token-to-token variability may be found in Breen (in

progress) for W. Arrernte, and Wilkins (1989) for E. Arrernte.  However, an illustration

of phonetic variability in W. Arrernte /´/ follows:

\'m´N´\ = ['m´Nå] ‘fly’

\'kw´j´\ = ['kwi∆] ‘oops’

\'p´t4´m´w´\ = ['pIt4´moó] ‘come here!

\'l´w´\ = ['loå] ‘how about’

\'nW´k´\ = ['nUkå] ‘my’

\'it4´\ = ['it4a] ‘nothing’

Having made these observations, it should be mentioned that in an instrumental

acoustic study of E. Arrernte vowels, Ladefoged and Maddieson (1996) fail to find a

clear picture of environmentally conditioned /´/ allophony.  Rather, they find a very

large range of variation for tokens of /´/, which cannot be correlated with any particular

preceding consonant environment.  (Note that Breen’s statement of allophony for /i/

above involved the following consonant.)  Moreover, there is substantial overlap of

means for /´/ in different preceding consonant environments.  These results imply a

large range of free variation in /´/.

Arrernte also has rounded vowel phones ranging from [o] to [u] which, as

mentioned above, are taken to be allophones of /´/.  Breen’s analysis of these rounded

vowels is to posit a “rounding prosody”, which is associated with the syllable as a
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whole, rather than with a particular vowel or consonant.  We will return to this issue

after a brief treatment of syllable structure, below.

2.3.3  Syllable Structure

Surface syllable structure in Arrernte is (C)(C)V(C):  e.g. \l1t1´|p´\=[l1d1´| • på]

‘bald’.  No word may end in /i/ or /a/, or begin with /´/.  Words may end in [´] when

they occur phrase-finally, but in connected speech [´] is usually elided.  There is no

phonemic contrast of /...C/ with /...C´/.  Thus in citation form the word for ‘gap’

appears in two forms:  \tWat4´\=[tWat4å]~[tWat4].  Breen (personal communication) posits

underlying /...C/, with optional phrase-final [´] epenthesis.  Vowel sequences are not

allowed within a phrase; they occur when a phrase ending in optional [´] precedes

another vowel-initial phrase, as in [\j´N´\]pp [\an´m´\]pp =  [j´Nå an´må], versus [\j´N´

an´m´\]pp =  [j´Nan´må] ‘I am sitting.’

Breen (1990) has offered an intriguing analysis of Arrernte syllable structure,

whereby the only legal underlying syllables are VC(C); i.e. syllables have codas but no

onsets.  (Part of the evidence for this analysis is the complete predictability of word-

final \´\, as explicated above.)  In Breen’s analysis, the mid vowel is epenthesized in

final position, as well as in other vowel positions not occupied by /i/ or /a/.  This

analysis allows for more straightforward accounts of reduplication, affixation and stress

assignment (see below), and trivial accounting for forms in a language game called

“Rabbit Talk” (Turner and Breen 1984) in which the first underlying rhyme is placed at

the end of the word.  All of these processes are quite a bit more complicated to account

for in a CV analysis.

Underlying structures following Breen’s analysis are shown for a few examples

below.  The last case involves rounding, which is analyzed as being associated with a
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syllable, on its own tier (although it has been written above with a raised ‘w’, for

convenience.)  This analysis captures important regularities concerning the distribution

of rounding on consonants and vowels.  For details of the analysis and its justification,

see Evans (1995.)

Surface form Gloss Underlying structure
per Breen 1990

[n´m´] sit, be VC  VC

      n    m 

[n1t1´m] give

n1

VCC  VC

 t1 m

[a|at4´] true VC  VC

   a |  a  t4

[INUn1t1´] morning

VC  VCC

   i  N    n1 t1

w

σ σ

2.3.4  Stress

Primary stress generally falls on the first syllable containing an onset, with

secondary stress being associated with every other following syllable, except the final

syllable.  Wilkins (1989) mentions one source of counter-examples of the shape /#aC´/,

in which stress may fall on either \´\, which has the onset, or the initial \a\.  Thus,

‘Arrernte’ can be either [a'|´=Ê´] or ['a|´=Ê´].  Moreover, there is evidence that both /a/
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and /i/ seem to attract stress even where they are not initial.  Thus, the word for

‘fingernail’ can be produced as ['t4´pma’´] (with stress on the first syllable containing an

onset) or [t4´p'ma’´] (with stress on the syllable whose nucleus is /a/.)  For these and

other reasons, Breen assigns a different status to /i/ and /a/ than to the mid vowel.

Breen accounts for default stress in his VC analysis by positing that stress falls

on the second underlying rhyme of words.

2.4  Instrumental Studies of Australian Coronals

Detailed articulatory studies for Australian languages are scarce.  Although a

resurgence of work on Australian languages has taken place in the last 30 years (Dixon

and Blake 1991 present an overview) nearly all of this work has been based on

impressionistic descriptions of sounds, as yet uncorroborated by instrumental studies.

One result is that articulatory descriptions vary widely among researchers.  Only a few

instrumental articulatory studies are known.  Jernudd (1974) examined palatograms (but

no corresponding linguograms) for three Gunwinjgu speakers.  Butcher in a very

thorough study (to appear) uses both static and dynamic palatography

(electropalatography) to examine articulations for one speaker each of quite a few

Australian languages.  (The languages examined using static palatography include:

Burarra, Eastern Arrernte, Gunwinjgu, Guugu Yimidhirr, Kalaw Kawaw Ya, Murrinh-

Patha, Ngaanyatjarra, Nyangumarta, Warlpiri, and Yanyuwa.  Electropalatographic

records also exist for most of these.)  The broad lines of Butcher's findings are

summarized below.  (The preliminary results summarized here are from work in

progress which Professor Andrew Butcher, Flinders University, Adelaide, Australia, has

generously made available to the author.)



43

Apical alveolars:  Sounds which have traditionally been called “apical

alveolars” in languages examined by Butcher are marked by consistency of articulation

across both languages (speakers) and repetitions.  Linguograms and palatograms

together show these articulations to be uncontroversially apical and alveolar; the tongue

apex makes a narrow band of contact (from 2-7 mm at the midline between the central

incisors, measured from photographs of the palate) just at or in front of the alveolar

ridge.  Not much allophonic variation is observed among the articulations, probably

because of the freedom of the apex to move relatively independently of the tongue

body.  EPG shows evidence of a very rapid closing movement  of 10-20 milliseconds.

(“Closing movement” was defined as the duration from the time of initial movement of

the tongue away from the vowel toward the roof of the mouth, until the maximum

number of electrode contacts had been reached.  Butcher notes that the moment of

movement away from vowel position is imprecisely defined because of the nature of

EPG records; contact patterns are measured, not actual movement.)  Apical alveolars

also show a hold phase (measured from maximal closure to evidence of a break in the

stop; i.e. beginning of the release) that is stable and static.

Apical postalveolars:  Articulations which have been characterized as “apical

postalveolar” show greater variability across the languages for which phonemes of this

type were examined, as well as allophonically within them.  Typically, a 5-12 mm band

of contact is made in the postalveolar or prepalatal area, most often sublaminally.

Apical postalveolars have slower closing movements than apical alveolars (30-90 ms)

and the hold phase, once closure has been made, is dynamic; the tongue moves forward

so that release is from a postalveolar or alveolar contact area.  Recalling our discussion

of cue-licensing of postalveolars from Chapter One, Butcher’s observations provide an

insight into why postalveolars often have asymmetrical formant transitions.  These
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differences can be attributed to different positions of the tongue at closure and release.

Moreover, the slow closing movement for this category of apicals implies particular

salience for offset transitions, because of their long duration.

The fact that their occlusions are dynamic prompts the question of whether

postalveolars are actually flaps.  The Texas Instruments/Massachusetts Institute of

Technology (TIMIT) speech database (see Zue et al. 1990 for details) uses the criterion

of lack of release burst for defining flaps.  By this criterion, postalveolars are not flaps.

Moreover, they are much longer in total mean duration (100 ms) than the flaps in

TIMIT (mean=29 ms, Byrd 1993.)  In addition, they have too significant a VOT and too

loud a burst amplitude to be considered [+sonorant].  However, though not flaps, they

ought to be considered a dynamic gesture type.

Non-contrastive apicals:  Butcher finds non-contrastive initial apicals to be

intermediate in articulation between contrastive alveolars and postalveolars, though

significantly longer in release duration than either.  (The latter may be an effect of

prosodic position.)  Non-contrastive apicals are like postalveolars in that they form a

band of constriction 5-10 mm wide, and that they move forward between closure and

release.  On the other hand, they are not usually sublaminal, and are intermediate

between the alveolar and postalveolar categories in their point of constriction on the

roof of the mouth.  Thus, these results show evidence for the adaptive mechanism of

polarization.  Recall that under the polarization scenario summarized in Figure 1.6 of

Chapter One, we expect to find both of the contrastive apicals at different places than

the non-contrastive apical, and reciprocally, we expect the non-contrastive apical to be

intermediate between them.

Laminal dentals:  Butcher finds that so-called “laminal dentals” involve the

dental and alveolar region of the roof of the mouth, and may be formed in one of three
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ways.  In order of probable frequency, these articulations are: 1) interdental with

tongue-tip up––i.e.  the tip is visible between the teeth 2) interdental with tongue-tip

down––i.e.  the tip is behind the lower teeth and the blade is visible between the teeth,

or 3) dentialveolar with tongue-tip up––i.e.  both tip and blade make contact with the

surface behind the upper teeth.  Even within the subset of languages with contrasting

laminals, there is a range of variation.  Moreover, within a given speaker’s utterances,

all three types of articulation can occur.  Variation may in part be attributed to

carefulness of speech (with interdentals being careful variants, and dentialveolars being

rapid variants.) Whether articulated with the tongue tip up or down, “laminal dentals”

create a 13-20 mm band at closure, from the teeth to the alveolar zone.

Laminal palatals:  Articulations described in the Australian literature as

“laminal palatal” appear to be articulated with the tongue tip down in the majority of

cases observed by Butcher, and are similar whether they have phonemic or merely

allophonic status.  These articulations form a 9-13 mm band of constriction in the

alveolar and postalveolar, or postalveolar and prepalatal areas.  (Note that this is a

narrower midsagittal constriction than for the laminal dental category.)  However,

additional contact behind the occlusion may be broader at the sides of the tongue,

evidence of a raised tongue body.  An additional characteristic, which probably affects

stop durations of the laminal palatals, is indicated by Butcher’s EPG data: at closure, the

tongue is initially braced at the lower teeth, and contact is extended from front to back.

At release, contact is “peeled” away, from back to front.  (For an account of how

bracing facilitates tongue movements, see Stone 1991.) This type of articulation is

likely to involve slower movements than those in which the tongue tip meets and pushes

off the roof of the mouth.
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The midsagittal sections in Figure 2.3 (drawn by the author from these

descriptions) summarize the articulations that Butcher finds representative of the four

categories of Australian stop.  Because the overall tongue configuration and resulting

shape and volume of the vocal tract as a whole determines the acoustics of these

contrasts, Butcher (personal communication) has made the insightful suggestion that

convexity versus concavity of the upper surface of the tongue may be as appropriate a

feature to use in describing these contrasts as apicality versus laminality.  Under such a

system, we would predict laminals to be convex, and apicals to be concave, with respect

to the occlusal plane.

laminal dental apical alveolar apical postalveolar laminal palatal

convex concave concave convex

Figure 2.3:  Representative Australian stops per Butcher (to appear)

Anderson and Maddieson (1994) acoustically differentiate the four phonetic

coronal stops of “Traditional Tiwi” (Lee’s term for the stable variant of the language

used by speakers over 30 years of age in her 1987 study).  They focus on closure and

release durations, relative amplitudes at burst transients, and short-term spectral

patterns, for two female and three male native speakers.  (Data was collected in

Australia by Maddieson.)  In the following summary of the Tiwi results, articulations
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are referred to by their traditionally assumed active and passive articulators, but bear in

mind that none of these articulations were instrumentally verified.

The laminal dental stop has a low-amplitude burst and energy dispersed over a

wide range of frequencies in its spectrum, suggesting an articulation with a distributed

constriction, made in the front of the mouth.  Its laminal palatal allophone is

differentiated from other segments (including the laminal dental) by a long Voice Onset

Time (VOT) and associated frication, implying an especially distributed constriction.

The apical postalveolar stop is well differentiated from other segments:  it is

short in duration, high in burst amplitude, and shows a narrow distribution of spectral

energy.  These characteristics support Butcher’s analysis of a small articulator without

much obstruction behind it.  There is probably a significantly large front (sublaminal)

cavity at closure.

Surprisingly, despite Butcher’s evidence of articulatory stability, the apical

alveolar stop is most difficult to characterize, as it often shows characteristics of one or

more of the other stop categories.  However, it differs from the apical postalveolar in

having longer voiceless closure, longer VOT, and wider bandwidth of its major spectral

peak.  Thus, it is probably a more forward articulation than the apical postalveolar.  It

differs from the laminal palatal in VOT, suggesting a lighter articulator.  Its greater

relative burst amplitude as compared with the laminal dental points to a difference in

constriction size between them; however, it is hardest to differentiate from the laminal

dental, which is not an isolated difficulty.  Dart (1991) found no differences in closure

duration for either Malayalam or 'O'odham laminal dentals and apical alveolars, and

differences in VOT in the case of only one of three speakers of Malayalam.  In Toda,

VOT does not distinguish confirmed laminal dentialveolars from apical alveolars

(Shalev et al. 1994.)
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To summarize these results, recall that in Tiwi only three of the four stops

contrast phonologically; the laminal palatal [t4] is an allophone of laminal dental /t1/,

before /i/.  Leaving aside for the moment the clearly important formant transitions

to/from surrounding vowels, speculation on additional cues which native speakers

might potentially use to identify the contrasts follows.  Apical postalveolar /Ê/ may be

distinguished from both laminal dental /t1/ and apical alveolar /t/ in having a higher burst

amplitude, shorter voiceless closure and VOT, and a narrow-bandwidth, isolated

spectral peak.  Laminal dental /t1/ may be distinguished from apical alveolar /t/ by a

lower amplitude burst and more distributed spectrum.  Apical postalveolar /Ê/ is shorter

in voiceless closure and VOT, and higher in burst amplitude than both apical alveolar /t/

and laminal palatal [t4].  It has a narrower spectral energy distribution than apical

alveolar /t/.  The apical alveolar and laminal palatal may be distinguished by VOT

(longer in the latter.)

With characteristic inclusivity, Ladefoged and Maddieson (1996) provide

instrumental acoustic data and analysis of several aspects of E. Arrernte.  They treat

stop burst spectra (p.30), giving evidence that the active articulator may determine

spectral shape; apical spectra seem to be characterized by a midfrequency peak, whereas

laminal spectra smoothly decline over the frequency range observed.  The center

frequencies of Arrernte nasal zeroes (p.116 ff.) are discussed as a way to infer tongue

shape in nasals; knowing that large oral cavities have lower–frequency nasal zeroes than

smaller oral cavities, they deduce that laminal dentals must have a higher tongue body

configuration than apical alveolars, which buttresses Butcher’s argument that laminals

are convex while apicals are concave.  They provide formant frequency data for laterals

(p. 194), and note the absence of laminal trills and taps, even in Australian languages
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where laminals are widespread (p. 240), which constitutes evidence of the difficulty of

articulating trills and taps with the tongue blade.

Chapter One provided background on the particular theoretical questions of this

dissertation.  Chapter Two has introduced the multiple coronal contrasts in Australian

languages, relevant facts about the structure of the language to be examined here, and

results of previous instrumental investigations into Australian coronals.  Chapters Three

and Four will respectively address empirical studies into the articulation and perception

of W. Arrernte coronals.
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Chapter Three:  Articulation of W. Arrernte Coronals
Recall that the goals of this study are to determine whether W. Arrernte shows

evidence for polarization or gestural economy in the domain of consonant Place, and to

find evidence for licensing by cue in native listeners’ perception of consonants.  This

chapter addresses the first of these goals, presenting in turn the methods that were used

to collect and analyze articulatory data, and the results of analysis.  The chapter begins

with a brief description of the language consultants who participated in the study, as

well as the logistics of gaining permission to work with them.  Following this, a detailed

description of static palatographic methods is included for the field linguist.  In

subsequent sections we describe how video images were processed and measured so

that tongue–palate contact patterns could be determined, and the results of those

measurements.  Separate sections focus on results for palatograms and for linguograms,

and a final section summarizes the general tongue–palate contact patterns found for

these coronals.

3.1  Making Contact with Language Consultants

The Institute for Aboriginal Development, and in particular Gavan Breen and

Robert Hoogenraad of its Central Australian Dictionaries Project, made it possible for

the author to be affiliated with the institute during her stay in Australia.  Breen

generously invited the author on fieldtrips where contact with native speakers of W.

Arrernte could be made.  From these contacts, relationships with several extended W.

Arrernte families in Nthareye (Hermannsburg) and Iwepetheke (Jay Creek) developed.

As is often the case with privately-owned aboriginal land, it was necessary to request

permission from the Nthareye Council and the traditional custodians at Iwepetheke in

order to stay in these communities.  The two fieldsites are shown in Figure 3.1.
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Figure 3.1:  Fieldsites at Nthareye (Hermannsburg) and Iwepetheke (Jay Creek).
Adapted from Deckert, 1991.
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3.1.1  Informed Consent and Payment of Consultants

The investigator helped each potential participant review an informed consent

form for the study, reproduced in the Appendix.  Each point was explained to

consultants and/or translated into W. Arrernte.  Though nearly all W. Arrernte people

speak Aboriginal English (a dialect of Australian English), a translator was often asked

to help convey the meaning of this formal, technical document.

Language consultants were generally paid Au$15 hourly for their participation

in the study.  Those who participated in palatographic work received $20 per hour.  In

addition, the author made transportation available to Alice Springs for supplies, to

outstations, and for food collection trips on traditionally owned land.  Access to a

vehicle was both an important compensation for participants, and rewarding for the

experimenter.

3.1.2  Language consultants:  Demographics

Twenty native speakers of W. Arrernte contributed to the study in different

capacities.  All 20 provided acoustic records, while a subset of 12 (8 women and four

men) provided complete articulatory records, and of these 12, three men and 6 women

participated in perception tests.  The data included a substantially greater number of

women than men, because the investigator had much freer social access to women than

men, which is usual for women in Arrernte society.

The youngest speaker was 16; the oldest probably 65.  Data for the 6 speakers

reported on in this chapter represents three men of approximate age 30, 40 and 65, and

three women of approximate age 16, 25 and 55.
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3.2  Collecting Articulatory Records

Direct instrumental articulatory data for tongue-palate contact patterns was

collected using a method called static palatography, which comprises two types of data:

palatograms and linguograms.  Briefly, a speaker’s tongue or palate is painted with a

non-toxic marking material.  The speaker utters a word containing the segment of

interest, and inserts a mirror into the mouth to reflect the resulting contact area on the

palate, or protrudes the tongue to show contact on the tongue.  The contact area is

photographed or videotaped and the speaker then rinses his or her mouth with water.

Of the types of records collected, articulatory records were the most laborious

for language consultants.  Articulatory data was obtained only after wordlists were

discussed and elaborated, and after acoustic records had been collected, so that speakers

could familiarize themselves with the study and decide whether they were interested in

a further time commitment.  In each case, the author showed potential participants how

palatograms, linguograms and dental casts were made, so that they could observe and

ask about the procedure before deciding to participate.  The experimenter demonstrated

procedures on herself or on a consultant already participating in the study.

A detailed version of the procedure for obtaining palatograms, linguograms,

dental impressions and dental casts follows, for the benefit of other fieldworkers.  This

is adapted from methods described in Ladefoged (1997a).

Sessions usually lasted from one to two hours at a time, depending on when the

speaker wished to end the session.  Palatography is time-consuming and fairly tedious,

compared with other types of linguistic consulting work such as finding words, telling

stories or singing songs.  Several speakers chose not to continue after the first session.

Others (including those whose results are reported on here) were quite patient and

willing to participate in this aspect of the study.
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3.2.1  Palatography mirrors

Rectangular, rounded-edged mirrors were made to specification by a glass

company in Alice Springs, of glass 4 mm in thickness.  Mirrors were 210 mm in length;

long enough for the speaker to hold one end in her hand while the other end reflected an

articulation, without obscuring the reflection.  Four mirrors were made, of width 50, 55,

60 and 65 mm.

3.2.2  Set-up

video 
camera

mirror

light source

Figure 3.2:  Schematic set–up for static palatography

A Sony 8mm video recorder with an attached 30W light source was set up on a

tripod about five feet from the speaker.  The speaker sat in a chair, preferably with a

wall behind her to provide an anchor for her head.  On the first session, the speaker

chose a palatography mirror which fit comfortably in her mouth, but reflected the teeth

on both left and right sides.  The palatography mirror, as well as a large hand mirror,

tissues, cup and jug of water, and large spittoon (cooking pot) were placed within easy
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reach.  A clean towel was placed over the speaker’s chest and shoulders to protect her

clothing from stray charcoal.  When the speaker was seated comfortably, the video

camera was zoomed in to focus on her mouth.

A mixture of olive oil and digestive charcoal was prepared.  Powdered charcoal

was emptied from digestive charcoal capsules (available in pharmacies) and ground

slightly, to make sure that the mixture would be smooth in consistency.  Olive oil was

added until a thick black paint resulted.

Each speaker had her own paintbrush, labeled with her name for re–use.  At the

beginning of each session, the speaker’s paintbrush and the appropriately–sized

palatography mirror were sterilized with boiling water and detergent, followed by

antiseptic.  The use of boiling water is important not just for sterilization, but for

keeping the olive oil mixture smooth.  When cold water is used, globules of water

remain on the brush and cause the resulting mixture to be lumpy and hard to apply.

Wide, soft brushes (about 10 mm in width) were chosen over slimmer brushes or

disposable cotton tips because it takes only a few strokes to cover the entire tongue or

palate with paint, an advantage for ticklish speakers.

3.2.3  Palatograms

When the speaker was ready, she protruded and relaxed her tongue.  The tongue

was painted as far back as was comfortable for the speaker, who then returned her

tongue to a resting position, keeping her mouth open so that no tongue-palate contact

was made.  The camera was turned on, the speaker was told the English gloss, and was

asked to say the Arrernte word in question.  The person was videotaped uttering the

single word.  During the articulation paint was transferred to the roof of the mouth

where the tongue had made contact with the palate.  The speaker then placed the
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palatography mirror in her mouth to reflect the articulation, being directed to position

the corners of the mirror behind the back molars, so that the entire pattern of contact

could be seen through the videocamera.  Participants tended to become fairly adept at

placing the mirror in the same way for each palatogram.  Nevertheless, the mirror’s

position would have inevitably changed slightly from token to token, causing angular

distortion of the image filmed.  Methods for correcting this distortion are discussed

below.  After being filmed the speaker was free to view the articulation in the hand

mirror, and to rinse her mouth with water before her tongue was painted for the next

palatogram.

Speaker’s tongues differed in their absorbency to the charcoal mixture.  For a

few speakers, black color began to collect on the tongue despite repeated rinsings.  In

these cases, subsequent sessions began by obtaining linguograms first, since repeatedly

painting the tongue for palatograms caused loss of sufficient contrast on the tongue.

Figure 3.3:  Palatogram; still image digitized from video.  Orientation:  Upper teeth
shown at top and reflected in the mirror at bottom.  Token:  \p´Ê´\ ‘rock’.
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3.2.4  Linguograms

The speaker was asked to incline her head back slightly so that her palate could

be painted.  Again, this worked best when the chair was against a wall where the

speaker could rest her head.  Although more laborious than palatography in that the

palate may be ticklish, and the surface to be painted is less accessible, linguography is

also simpler in that a mirror does not have to be used to reflect the resulting pattern.  To

produce linguograms, the roof of the mouth and inside surfaces of the teeth were

carefully painted. The speaker was instructed to relax with her mouth open while the

camera was turned on, then directed to say the single word in question, and to put her

tongue out so that the pattern could be filmed.  Speakers were then instructed to move

the tongue up, down or to either side, to show sublingual contact, or contact on the sides

of the tongue.  Figures 3.4a and 3.4b show two still images digitized from a video clip

of a speaker uttering \p´Ê´\ ‘rock’, and then showing contact areas on the tongue.  In

16a, the speaker has stretched her tongue out and down to show a large portion of the

upper surface, including the dorsum; a few moments later in 16b she has brought it in

and up so that the underside is visible.  Note how different in size and shape the tongue

can appear to be.  We will address this issue below under Linguography:  Image

Processing.
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Figure 3.4a:  Linguogram showing tongue
blade and body contact.
Token:  \p´Ê´\ ‘rock’

Figure 3.4b:  Linguogram showing tongue
tip and sublingual contact.
Token:  \p´Ê´\ ‘rock’

3.2.5  Dental Impressions

It is important to have three dimensional information about the shape of

speakers’ palates, in order to be able to relate palatographic and linguographic patterns

to an articulation as a whole, for instance as would be shown in a midsagittal section.

For this reason, dental impressions of each speaker’s palate were taken.

“Kromopan” chromatic dental alginate was used to make impressions in

negative of speakers’ palates.  The material has different color phases during mixing

(purple), setting (pink), and set (green), which makes timing while mixing and setting

unnecessary.  Water was added to several tablespoons of powdered alginate in a flexible

plastic container and quickly mixed until a thick pink paste resulted (this meant using

slightly less water than the instructions call for when using dental impression trays, to

prevent alginate from dripping from the mirror.)  The alginate was gathered in a plastic

scoop and transferred to the end of a palatography mirror wide enough to include the

entire upper dentition.  The mirror with its mound of alginate were placed carefully into

the speaker’s mouth while she leaned forward over a large cooking pot and breathed

through her nose.  The speaker was instructed to bite down until the mirror was firmly
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pinned in the occlusal plane between her upper and lower teeth, to continue to breathe

through her nose, and to drool if need be.  When the alginate had set (turned green) the

speaker was asked to gently remove the impression by rocking the mirror to and fro,

and then asked to rinse her mouth.  Two alginate impressions were made in this way for

each speaker.  Impressions were stored in water until they were cut and traced, to

prevent shrinkage.

One of the alginate impressions was used to make a topographic drawing of the

shape and dimensions of the roof of the speaker’s mouth.  First, since they do not figure

in articulations, impressions of the outer surfaces of the teeth were removed, as shown

in Figure 3.5.  (In this and the following figures, note that the palatography mirror used

for the purposes of these illustrations is not of the type described above.)  Next, the

impression was removed from the mirror with a metal spatula or knife (Figure 3.6.)

The flat portion of the impression (the occlusal plane) was placed on a piece of graph

paper, traced and labeled (Figure 3.7.)  The impression was then cleft through in the

midsagittal plane, between the two central incisors, as shown in Figure 3.8.  (Often the

bisecting line between the two central incisors had to be estimated.  Many Arrernte

speakers above 25 years of age have one or more incisors missing.  Boys have incisors

removed upon reaching adulthood.  The reason for women’s lack of incisors is not

clear.)

Each resulting half was traced in the midsagittal plane, to yield a profile image

of the shape and size of the palate (Figures 3.9a and 3.9b.)
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Figure 3.5: Removing impressions of outer
surfaces of the teeth.

Figure 3.6: Sliding the alginate impression
from the mirror.

Figure 3.7:  A tracing of an alginate
impression, in the occlusal plane.  The
serrated curve shows where inner surfaces
of the teeth join the palate.

Figure 3.8:  Cutting the impression in the
midsagittal plane.
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Figure 3.9a and b:  Tracing the midsagittal profile of the palate.

Next, both halves were placed back together and bisected in the coronal plane,

usually between the second premolar and first molar on each side, resulting in four

quadrants.  These sagittal and coronal cuts were used to define x and y axes and an

origin on the graph paper, as shown in Figure 3.10.

The alginate mold was then sliced parallel to the occlusal plane at successive 5

mm increments, so that contour lines representing successively higher areas of the mold

could be traced.  After each slice, the quadrants were re–aligned together at the origin

and traced, yielding a contour map of the palate, as shown in Figure 3.11.
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coronal cut

midsagittal cut

Figure 3.10:  Alginate impression cut into
four quadrants, in midsagittal and coronal
planes.

5
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Figure 3.11:  Contour map of palate.

3.2.6  Slicing Tool

The tool used to repeatedly slice the alginate mold parallel to the occlusal plane

is a slight modification on a tool developed by Sinisa Spajic, consisting of a flat,

smooth, 190 mm x 125 mm wooden board.  On either side of this, four strips of 1.25

mm cardboard were pasted on top of one another, 70 mm apart, resulting in a two

parallel “walls” of height 5 mm.  On top of, and perpendicular to the cardboard walls

was placed an 80 mm long razor blade, creating a wide slicing area.  The dental

impression was pushed through this tool so as to cut off the bottom 5 mm of impression

material in the occlusal plane.  After each slice, the four quadrants were placed together

at the origin on the tracing paper, traced, and the process repeated until all of the

impression material was drawn in this way (see Figure 3.12.)
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razor

5 mm walls

Figure 3.12:  Schematic drawing of the slicing tool used in drawing contour maps of
palates.  The dark line around the upper dental impression shows where the razor has
sliced it.

3.2.7  Plaster Casts

It is also useful to preserve a record of landmarks in the mouth such as teeth and

ridges on the palate, because these landmarks help to locate where an articulation has

taken place when studying palatograms.  The second alginate impression was used to

create a positive of the palate in hard plaster.  A flexible plastic tub was greased with

vaseline.  Plaster was mixed and poured into the tub, taking care that no air bubbles

remained in the plaster which could create air pockets and render the resulting cast

imprecise.  The alginate cast was greased with vaseline and placed, upside down, in the

plaster.  After 30 minutes the hardened cast was eased out of the tub and the alginate

negative cut and/or pried gently out of the positive plaster mold.
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Figure 3.13:  Hard plaster cast taken from alginate dental impression.

3.2.8  Palatography Wordlist

As mentioned above, static palatography is a cumulative record of tongue–palate

contact during an utterance.  Thus, to the extent possible, it is important to choose

words containing only non–high vowels and labials in addition to the segment of

interest, in order to avoid confounding effects of other tongue-palate contacts.  Breen’s

W. Arrernte wordlist (in progress) was used to find words which include only one

coronal contact.  The subset of data for coronal stops and nasals which will be analyzed

here is shown in Table 3.1.  Each of these words is in common use in W. Arrernte.  For

each speaker, the wordlist was reviewed, and then two palatograms and two

linguograms of each word were recorded.
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Table 3.1:  Static Palatography wordlist:  W. Arrernte coronal stops and nasals

Laminal
Dental

Apical
Alveolar

Apical
Postalveolar

Laminal
Palatoalveolar

Stops
Between Vowels

'p´t1´
pouch (n)

'mat´(’´)
cloud (n)

'p´Ê´
rock (n)

'pet4´m´
is coming(vi)

Stops
Word-initially

't1´m´
grind (vt)

'T´p´
back (n)

't4ap´
grub (n)

Nasals
Between Vowels

ip'm´n1´
grandmother (n)

'man´
money (n)

'm´=´
veg. food (n)

'mp´n4´
crumb (n)

Nasals
Word-initially

'n1´m´
rain is falling (vt)

'N´m´
is sitting (vi)

't4n4´m´
is falling (vi)

Two cases require discussion.  In the word for ‘cloud’ /'mat´’´/, speakers were

instructed to omit the final syllable, in order to avoid potential confounding effects of

the /’/ on the resulting pattern.  Also, since a word completely lacking other coronals or

high vowels could not be found for the laminal palatoalveolar word-initial nasal /n4/, a

prestopped nasal /t4n4/ was used.  We will discuss this choice further in examining results

of measurements on palatograms.

3.3  Palatography:  Image Processing

For each token, the relevant video clip was digitized into a computer file from

which a high-quality still frame was chosen for analysis.  Typically, an 8 to 10 second

sequence of videotape had been filmed for every palatogram or linguogram.  The

sequence was captured at 30 frames per second, and examined frame by frame, to

choose frames which most clearly showed the pattern made on the palate or tongue.

3.3.1  Correcting and Measuring Palatograms

Measurements of palatograms were taken using tools in the program NIH

Image.  As mentioned above, slight differences in the angle at which the mirror is
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placed in the mouth relative to the occlusal plane (angle x, in Figure 3.14) cause the

reflected image to be potentially lengthened or shortened, in both vertical and horizontal

directions.  (Here, ‘vertical’ and ‘horizontal’ refer to ‘front-to-back’ and ‘side-to-side’

in articulatory dimensions, respectively.)  For each still frame, measurements along

vertical and horizontal axes were independently corrected for angular distortion by

referring to actual millimeter measurements taken from lifesize plaster casts and

alginate tracings.

Figure 3.14:
Angle of mirror with respect to occlusal plane.

x

To obtain the horizontal correction factor for a given palatogram, a horizontal

calibration measure was taken at a line between the inner surfaces of the teeth on each

side, just forward of the upper first molars on the still frame (line ‘h’ in Figure 3.15.)

The same measure was taken on the lifesize cast with calipers, and verified with the

topographic tracing, to obtain actual mm values.  The ratio of the line’s apparent to

actual size was then used as a correction factor for horizontal measurements on this still

frame.

Likewise, to obtain the vertical correction factor for a given palatogram, a

calibration measure was taken at a line drawn from the front edge of the front incisors

backward to the horizontal calibration line (line ‘v’, Figure 3.16.)  Again, this measure

was made on the lifesize cast and drawing, to determine actual length of the line in mm.

The ratio of apparent to actual size of the line was used as a correction factor for

vertical measurements on the frame in question.
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Figure 3.15:

Horizontal calibration measure
bounded by inside surfaces of
teeth.

Figure 3.16:

Vertical calibration measure
bounded by front edge of front
incisors and line ‘h’.

The corrections described above remove linear distortions along the two axes,

and at the same time scale the image to a lifesize projection of the mouth in two
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dimensions.  Note, however, that corrections for three-dimensional “domal distortions”

caused by differences in the slope of the palate at different points, were not made.

Differences in curvature can clearly be a confounding element, but we judged that the

accuracy of static palatography may have an order of error magnitude larger than might

be introduced by differences in slope, and this type of correction was not attempted.

Notice that the speaker shown in the preceding figures does not have a complete

dentition.  In these cases, the reference line at the front edge of the front incisors was

estimated as closely as possible, usually by extrapolating a line from the remaining

incisor.  However, in two cases, the only way that the incisor reference line could be

drawn consistently, i.e. with reference to the same known points in each photograph,

was to use more idiosyncratic reference points on the teeth.  Figures 3.17 and 3.18 show

the speakers in question and the incisor reference lines that were drawn.

Figure 3.17:  Male speaker 1.  Placement
of incisor reference line:  Drawn between
left corners of frontmost teeth in midline.

Figure 3.18:  Male speaker 2.  Placement
of incisor reference line:  Drawn from left
corner of front left incisor, parallel to line
‘h’.
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3.3.2  Absolute and relative measurements

Measurements of palatograms were taken in pixels, and converted to both

absolute dimensions (millimeters) and relative dimensions (percent.)  For example, the

point of frontmost contact, shown as distance back from the base of the teeth to the

beginning of the black contact pattern, (measurement ‘a’ in Figure 3.19) was converted

to millimeters (mm) via its correction factor, and then to a percentage of its calibration

measure, in this case line ‘v’ (%=[a/v]*100).  Since speakers mouths vary in size and

shape, relative measurements were used to make differences or similarities in contact

patterns more comparable between speakers.

Figure 3.19:

“Frontmost contact” (measure
‘a’) as a percentage of line ‘v’
(line ‘v’ taken to be 100%.)
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3.4  Analysis of Palatograms:  Measurements

For the purpose of comparison, Figure 3.20 shows a sample palatogram for each

of the four categories of intervocalically contrastive stop, for the same speaker.

Measurements of palatograms were designed to reflect articulatory characteristics

which would also have acoustic consequences.  Measurements involved a) where the

frontmost contact for each category of coronal was made, b) how broad that contact

was, and c) the size of the space behind the constriction.  These are illustrated as ‘a’,

‘b’, and ‘c’ respectively, in Figure 3.21.

Figure 3.20:

Tokens of the medial
stops for one speaker

Apical Alveolar \t\ Apical  Post-alveolar \Ê\

Laminal  Dental \t1\ Laminal  Palatoalveolar \t4\
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Figure 3.21:

Measurements of
palatograms

3.4.1  Measure ‘a’:  Frontmost Contact

Comparative inspection of frames showed that frontmost contact on the roof of

the mouth in the midline was likely to yield differences among categories.  Indeed, this

metric has been used before by Butcher (to appear), Dart (1991) and others, as an index

of place of articulation.  Moreover, since this measure reflects the size of the cavity in

front of the constriction, it can be taken to be associated with acoustic correlates such as

spectral shape (Fant 1960.)  Note that in Figure 3.20 the laminal dental shows contact

on the surfaces of the incisors.  The apical alveolar begins further back, clear of the

teeth in the case of this token, and frontmost contact for the apical postalveolar and

laminal palatoalveolar begin appreciably further back than the apical alveolar.  As

mentioned above, frontmost contact was quantified by measuring from a line drawn at

the base of the teeth back to the front edge of the contact pattern, in the midline (line

‘a’, Figures 3.19 and 3.21.)



72

3.4.2  Measure ‘b’:  Length of Contact

The apical/laminal distinction itself leads us to expect differences between

apicals and laminals based on length of contact from front to back in the midline.

However, there may be significant differences in length of midline contact among each

of the place categories, or between stops and nasals in a single category, in addition to

the apical/laminal distinction.  Observe that the laminal dental and laminal

palatoalveolar in Figure 3.20 are very long in midline contact from front to back,

although it is not possible to tell from these tokens which may be longer or whether

there is a significant difference between them.  The apicals, as expected, are much

shorter in midline contact.  This metric, too, has been used before (Butcher, to appear),

and has expected acoustic correlates.  Unless evidence of tongue movement during

closure is present (e.g. smearing of the contact print), length of midline contact can be

associated with the size and mass of the active articulator.  The small tongue tip will

make a narrow contact; the broader blade will make a longer contact.  Moreover, it is

reasonable to expect that the tip is a quicker articulator than the blade, because of its

lighter mass and because, being on the periphery of the tongue, it is more independent

of other parts of the tongue (cf. the lack of laminal trills noted in Ladefoged and

Maddieson 1996.)  In turn, the relative speed of the active articulator relates to voice

onset time, amount of frication at burst release and relative amplitude of bursts (Stevens

1998.)

Each still frame was measured for contact length by drawing a line from the

front to rear of the contact in the midline (line ‘b’, Figure 3.21.)  Actual contact length

was determined by using the vertical correction factor for the frame.  To describe

contact length in relative terms, ‘b’ was once again expressed as a percentage of line  ‘v’

(Figure 3.19.)
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3.4.3  Measure ‘c’:  Back Cavity Index

Just as the cavity in front of the constriction can be expected to relate to acoustic

consequences (spectral shape), the cavity from glottis to the back of the oral closure can

be expected to relate to acoustic signatures by which listeners may differentiate coronal

places, i.e. formant transition loci at edges of neighboring vowels (Fant 1960.)

As an approximation of the area of the oral cavity behind the constriction,

differences in the amount of empty space behind the constriction were measured.  The

size of this space is affected by raising of the sides of the tongue body as well as how

far back the midline constriction extends; the more contact on the palate, the smaller

this area will be.  To quantify the size of the back cavity, an area bounded by the rear

line of contact and the horizontal calibration line was measured (shown as ‘c’ in Figure

3.21.)  In a way analogous to the linear measurements described above, to obtain an

areal correction factor for a given palatogram, a (two-dimensional) areal calibration

measure was taken for each speaker, both on two-dimensional photocopies of plaster

casts, and on still frames.  A reference area was measured, bounded by line ‘h’ and the

juncture of the teeth with the gumline (this area is outlined in Figures 3.22 and 3.23.)

The ratio of apparent to actual size was used as a correction factor to obtain

measurements in square millimeters.
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Figure 3.22:

Reference area on two-dimensional lifesize
copy of speaker’s plaster cast.

Figure 3.23:

Reference area on still frame in
question.

To obtain relative measurements, measure ‘c’ was expressed as a percentage of

the same “reference” calibration area (labeled ‘r’ in Figure 3.24).
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Figure 3.24:

Area ‘c’ as a percentage of
reference area ‘r’.

Note the large difference in area ‘c’ when comparing the apical alveolar and the

laminal palatoalveolar in Figure 3.20 above.  The rearward extent of contact in the

midline, as well as the extent of lateral contact on the sides of the palate contribute to

this difference.

Results of measures ‘a’, ‘b’, and ‘c’ for different coronal categories are

discussed under Results:  Palatography.

3.5  Linguography:  Image Processing

As mentioned above with reference to Figures 3.4a and b, the tongue is

extremely flexible.  Clearly, measurements of contact patterns on the tongue would be

largely dependent on the way in which the speaker was holding the tongue, perhaps

more so than the extent of contact of the patterns themselves.  For this reason,

linguograms were not measured, but were instead described and classified according to

various criteria.  On a first pass, a subset of 80 linguograms representing 5 speakers
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were viewed on videotape by the investigator, and described in detail, without applying

categorical judgments.  Sample descriptions for two linguograms are given in Figures

3.25 and 3.26.

Descriptions included whether the upper, vertical or lower side of the tip was

involved in the contact, whether the front or the back of the blade was involved (and for

prints involving the blade, how much of the tip was also involved), the relative length of

midline contact in the sagittal plane, the rearward extent of contact both in the midline

and on the sides of the tongue in sagittal planes, the width of contact on the sides in the

coronal plane, and the general shape of the print.  From these descriptions, parameters

which were likely to be useful in categorically classifying the prints emerged.

Observing linguograms on video allowed a number of views of the articulation,

beginning with a frontal view at closure, as well as several different positions of the

tongue as the speaker was instructed to show the upper and lower surfaces, and in some

cases one or both sides.  These several views provided a better idea of the entire pattern

of tongue contact for a given articulation.
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Figure 3.25:  Description of linguogram from video (2 frames from the video segment
are shown here):  “Vertex and upper tip contact, no sublingual contact, thin midline
contact, thin contact on sides that extends back past middle of dorsum, u-shaped print.”

Figure 3.26:  Description of linguogram from video (2 frames from the video segment
are shown here):  “No tip contact, middle and back of blade involved, long midline
contact, wide contact at sides that extends back on the dorsum out of view (sagittal
contact in midline is narrower than sagittal contact at sides.)  ‘Butterfly’ shaped.”
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3.5.1  Independent Verification of Descriptions

On a second pass, for each of the 80 linguograms, two still frames were chosen

from digitized videoclips, to show contact on the upper and lower sides of the tongue

respectively.  Along the lines of Thomas (1999), pairs of frames were randomized,

numbered and submitted to the judgments of two other experienced phoneticians, as

well as to those of the investigator.  Linguograms were described and classified by each

judge, without knowledge of the phonological identity of the articulation involved.  Our

purpose here was to ensure objective and independently verified descriptions and

classifications, and to learn which criteria used by the different judges would be most

successful in describing differences among phonological categories.

The investigator showed a high degree of internal consistency between first-pass

descriptions from video and second-pass still frame judgments.  This consistency

boosted confidence that describing linguograms from video segments, where

phonological categories were known a priori, would not bias descriptions.  Moreover,

within the second situation, the level of agreement shown among the three judges was

high, with discrepancies being limited to two matters.  First, when naming prints

involving both tip and blade, preferential attention was given by two judges to the front

rather than the back edge of midline contact.  The third judge gave more attention to the

back edge.  Discussion of these discrepancies, together with further examination of the

linguograms in question, showed that two tokens of the same utterance by the same

speaker could differ in the location of frontmost contact for these tip-blade articulations,

but were more stable in rear contact.  That is, the back edge of contact seemed likely to

correlate better with linguistic categories than the front edge.  Thus, our definition of

“apicolaminal” was refined so that linguograms showing fine differences in the front

edge of contact could be gathered into this category.
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The second issue for discussion was the usage of “apical”, which varied slightly

among the three judges, as it does in the literature (refer to the discussion of “apical” at

the beginning of Chapter Two.)  Recall that our provisional definition of “tip”,

following Ladefoged and Maddieson (1996), included the portion of the rim in the

midsagittal line (the vertex), and 2 mm on the upper surface.  In the present

investigation, however, we observed that articulations involving the upper surface of the

tip, and optionally the vertex and a small portion of the underside of the tip, generally

cooccurred with a continuous u-shaped print which connected midline and side contact

(as in Figure 3.25.)  In contrast, articulations that had vertex and underside contact

without showing any upper surface contact in the midline, virtually always cooccurred

with a pattern of two discontinuous, almost parallel lines at the sides of the upper

surface of the tongue (as in Figure 3.4.)  Because of this pattern of distribution,

articulations showing upper apical contact and a u-shaped print were characterized as

(supra)apical, even in the cases where the print also included a small portion of the

underside of the apex.  Where only the lower, or lower and vertical surfaces were used

in conjunction with a parallel line pattern on the upper surface of the tongue, the

articulation was taken to be subapical.  Vanishingly few articulations remained

problematic to identify using these criteria.

On a third pass, the investigator used the video data to describe and classify the

full set of 322 linguograms using the jointly agreed-upon criteria.  Classificatory

judgments, as well as factors such as speaker identity, phonological identity, manner of

articulation, and position in word were entered in a spreadsheet.
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3.5.2  Data Reduction of Linguograms

A balanced subset of the linguographic data was chosen for statistical analysis.

For each of five speakers, two iterations of each word in Table 3.1 were included, for a

total of 140 tokens.  Table 3.1 is reproduced below.

Table 3.1:  Static Palatography wordlist:  W. Arrernte coronal stops and nasals

Laminal
Dental

Apical
Alveolar

Apical
Postalveolar

Laminal
Palatoalveolar

Stops
Between Vowels

'p´t1´
pouch (n)

'mat´(’´)
cloud (n)

'p´Ê´
rock (n)

'pet4´m´
is coming(vi)

Stops
Word-initially

't1´m´
grind (vt)

'T´p´
back (n)

't4ap´
grub (n)

Nasals
Between Vowels

ip'm´n1´
grandmother (n)

'man´
money (n)

'm´=´
veg. food (n)

'mp´n4´
crumb (n)

Nasals
Word-initially

'n1´m´
rain is falling (vt)

'N´m´
is sitting (vi)

't4n4´m´
is falling (vi)

From the normalized descriptions of tokens, four descriptive variables were

established.  Midline length refers to the extent of tongue contact in the midsagittal

midline, shown by the white lines in Figures 3.27 and 3.28.  Midline length is analogous

with palatography measure ‘b’:  length of contact.  Linguograms were assigned to one

of five value categories for midline length:  vertex only, short, medium, long and extra

long.  Figures 3.27 and 3.28 show two linguograms from the same speaker; the print in

3.27 was categorized as ‘extra long’, while the print in 3.28 was categorized as ‘vertex

only.’
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Figure 3.27: Categorization of linguograms
according to midline length:  ‘extra long.’

Figure 3.28: Categorization of linguograms
according to midline length: ‘vertex only.’

A second variable, rear point of contact, is shown by the crosshairs drawn in

Figures 3.29 and 3.30; this variable refers to the point of contact furthest back in the

midsagittal midline.  Rear point of contact is roughly analogous with palatography

measure ‘c’: back cavity index; both are ways to indicate the relative size of the cavity

behind the constriction.  Because the level of detail in the normalized descriptions was

high, eight value categories for rear point of contact were available:  sublingual, vertex,

apex, front of blade, midblade, back of blade, tongue front and tongue center.  The

linguograms in Figures 3.29 and 3.30 fall into the categories ‘tongue center’ and

‘vertex’ respectively.
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Figure 3.29: Categorization of linguograms
according to rear point of contact:  ‘tongue
center.’

Figure 3.30: Categorization of linguograms
according to rear point of contact:
‘vertex.’

To get an idea of the extent of tongue raising behind the closure, the coronal

width of the print was also observed, at roughly the level of the tongue front, as shown

in Figures 3.31 and 3.32.  Like rear point of contact, coronal width also contributes to

an indication of the size of the cavity behind the constriction, in that the degree of

tongue raising affects the total volume of the back cavity.  Categories for coronal width

at tongue front include no contact (i.e. the tongue body is low enough that contact does

not extend as far back as the tongue front), narrow, medium, and wide.
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Figure 3.31: Categorization of linguograms
according to coronal width at tongue front:
‘wide.’

Figure 3.32: Categorization of linguograms
according to coronal width at tongue front:
‘narrow.’  Note that the illustration line is
shown at an angle, to reflect the cupped
position of the tongue in this frame.

A fourth variable used to classify linguograms was the general shape of the

contact print.  Shapes fell into four main categories, examples of which are shown in

Figures 3.33–3.37.  Where there was contact on the vertex or underside of the tongue, a

second still frame is included to show this contact.  The variable shape captures the

general stance of the tongue during closure.
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Figure 3.33a: Categorization of
linguograms according to shape:  ‘parallel
lines.’  Upper surface of tongue.

Figure 3.33b: Categorization of
linguograms according to shape:  ‘parallel
lines.’  Lower surface of tongue.

Figure 3.34a: Categorization of
linguograms according to shape:  ‘u.’
Upper surface of tongue.

Figure 3.34b: Categorization of
linguograms according to shape:  ‘u.’
Lower surface of tongue.
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Figure 3.35a: Categorization of
linguograms according to shape:
‘triangle.’

Figure 3.35b: Categorization of
linguograms according to shape:
‘triangle’.

Figure 3.36a: Categorization of
linguograms according to shape:
‘triangle.’

Figure 3.36b: Categorization of
linguograms according to shape:
‘triangle’.
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Figure 3.37:

Categorization of linguograms according to
shape:  ‘butterfly.’

Figures 3.33a and b show the print contact pattern which was given the

shorthand ‘parallel lines’.  Figure 3.34a and b show the ‘u-shaped’ contact pattern.

Note that contact in 45b includes the sublingual surface and vertex, but not the upper

side of the apex.  In contrast, in 46b the print contact excludes the underside of the

tongue.

The four panels in Figures 3.35 and 3.36 show a third shape pattern, which

involves a roughly triangular shape covering the tip and blade, with lines of contact

extending back at the sides behind the central constriction.  Figure 3.35a shows the

same male speaker whose linguograms appear throughout this section.  Figure 3.36a

shows the same shape pattern for a different speaker.  For clarity, the triangle has been

outlined in the ‘b’ figures, because the speakers’ lack of upper incisors cause the front

of the pattern to be somewhat irregular.

Figure 3.37 shows the fourth print pattern, in which broad contact was visible

from the blade backward, but characteristically was slightly narrower in the midline

than on the sides.  This pattern was given the shorthand ‘butterfly’.
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Note that while palatography measures ‘b’ and ‘c’ have rough analogs in the

linguographic variables discussed above, palatography measure ‘a’, frontmost contact,

does not.  As discussed above, and as evident in Figures 3.35 and 3.36, the front edge of

tongue contact was less reliable than the back edge as a linguographic measure, not

least because of missing incisors.

Table 3.2 summarizes the four linguographic variables and their constituent

value categories.  For the variables coronal width and shape, some cells were missing.

This is noted in Table 3.2 by the term ‘not described.’  Recall that while descriptions of

tokens were fairly detailed, they did not involve forced choice tasks.  Thus, value

categories could not be assigned in several cases where a token had not been described

for a particular variable.

Table 3.2:  Linguographic variables and constituent value categories.

Midline length Rear point
of contact

Coronal width
at tongue front

Shape

vertex sublingual no contact parallel lines
short vertex narrow u
medium apex medium triangle
long mid-blade wide butterfly
xlong back of blade not described not described

tongue front
tongue center

3.6  Results:  Palatography

To return to the larger picture, recall that our purpose in quantifying these

articulatory patterns in W. Arrernte is to investigate whether there is evidence of

polarization among contrastive apical coronals as compared with non-contrastive
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apicals, and to investigate whether there is evidence of polarization of the nasals with

respect to the stops.  Thus, if we find that non-contrastive apicals have characteristics

intermediate between the contrastive apicals, polarization (of the contrastive apicals) is

indicated; if non-contrastive apicals cannot be differentiated from one or other

contrastive apical, gestural economy is indicated.  Similarly, if nasal places of

articulation differ from those of stops, polarization is supported, whereas if nasal places

are not differentiable from stops, gestural economy is supported.

Palatographic data was submitted to Analysis of Variance (ANOVA.)  Unless

otherwise noted, probabilities (‘p’ values) of less than .05 that the variation observed is

due to chance were considered significant.  The Scheffe’s procedure for post hoc

comparisons was used, because it allows for differences in numbers of tokens in groups,

and differing amounts of variability among groups.

In each case below, results are reported in raw (millimeter) values, followed by

relative (percent) values.  The use of raw versus relative values made no difference to

whether or not post hoc comparisons were statistically significant, except in three

comparisons, which are discussed under Figures 3.47 and 3.51.  The stability of these

results is surprising, in light of the differences in the shapes and sizes of speakers’

mouths.

We will treat patterns for stops versus nasals first, and then focus on results for

contrastive versus non-contrastive apicals.

3.6.1  Stops versus Nasals

3.6.1.1  Measure ‘a’:  Frontmost Contact

Figure 3.38 shows raw data for frontmost contact in the stops versus the nasals,

for each Place category of coronal.  The x-axis shows two columns, one for stops and
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one for nasals.  Units on the y-axis are millimeters.  The five points in each of the two

columns represent the means of frontmost contact (measure ‘a’ in Figure 3.19) for each

category of coronal.  In this and the following graphs, the vertical error bars show one

standard deviation around each mean.  For purposes of comparison, means for each

stop–nasal pair at a given Place are linked by a (roughly horizontal) line.

For the analysis shown in Figure 3.38, none of the stop–nasal pairs of means

differ significantly from each other (p =.1948.)

-2

0

2

4

6

8

10

12

14

16

Fr
o
nt

m
o
st

 C
o
nt

ac
t,

 m
ill

im
et

er
s

stop nasal

palatal

postalveolar

neutral

alveolar

dental

Figure 3.38:  Frontmost contact in millimeters for coronal Place categories:
stops versus nasals (p=.1948.)

Figure 3.39 expresses the same measure, frontmost contact, in relative values.

Units on the y-axis are percentiles.  The five means in each column reflect the

proportion of measure ‘a’ to the reference line ‘v’ in percent values (refer to Figure

3.19.)  Again, we find no significant differences between pairs of stops and nasals at

any given Place (p=.1758.)
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Figure 3.39:  Frontmost contact in percent for coronal Place categories:
stops versus nasals (p=.1758.)

Note that the mean of frontmost contact for laminal dental stops has a small

negative value.  This is caused by an artifact of measurement.  Recall that for two of the

speakers whose palatograms are examined here, the reference line at the “front edge” of

the front incisors had to be constructed in a slightly different way than for other

speakers, because of differences in the morphology of these speakers’ dentitions (refer

to Figures 3.17 and 3.18.)  The particular placement of the incisor reference line in these

cases made it possible to record contact in front of the reference line.  Thus, though the

modal result for frontmost contact in laminal dentals for these speakers was 0 mm (i.e.

contact usually extended to the tips of the upper teeth) the few negative values that were

recorded caused the mean to be slightly negative.

3.6.1.2  Measure ‘b’:  Length of Contact

Results for our second metric, length of midline contact in the sagittal plane

(measure ‘b’ in Figure 3.21) are summarized in Figures 3.40 and 3.41.  Length of

contact for stops does not differ significantly from length of contact for nasals at any

given Place of articulation (p=.0512 for raw millimeter values, p=.0901 for relative
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values in percent.)  However, because the result for raw values almost reaches

significance on this test, an analysis of the interaction between Place and Manner was

pursued.  Note that the slopes of the lines joining stops and nasals differ from each

other.  In particular, laminal dental stops appear to be longer in midline contact than

laminal dental nasals.  To determine whether stops and nasals behave differently at

different Places, interaction between the factors of Place and Manner was examined in a

two-way ANOVA.  The resulting interaction term (p=.8546) showed a high probability

that differences were due to chance.  Though the difference between dental stops and

nasals appears to be larger than other stop-nasal pairs, the dental pair does not behave

significantly differently from other stop-nasal pairs on this measure.
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Figure 3.40: Length of contact in millimeters for coronal Place categories:
stops versus nasals (p=.0512.)
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Figure 3.41: Length of contact in percent for coronal Place categories:
stops versus nasals (p=.0901.)

3.6.1.3  Measure ‘c’:  Back Cavity Index

Results for the third metric, the back cavity index (measure ‘c’ in Figure 3.21)

once again show no significant effect in post hoc comparisons between stops and nasals

of a given Place category.  This result holds whether raw or relative measurements are

being considered (p=.4848 and p=.4777 respectively.)  Figures 3.42 and 3.43 show

results.
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Figure 3.42:  Back cavity index in millimeters for coronal Place categories:
stops versus nasals (p=.4848.)
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Figure 3.43:  Back cavity index in percent  for coronal Place categories:
stops versus nasals (p=.4777.)

3.6.1.4  Stops versus Nasals:  Analysis and Interpretation

Recall the scenarios outlined under Western Arrernte:  Predictions above, with

regard to the derivative mechanisms of polarization and gestural economy.  Predictions

for stops versus nasals, as summarized in Figures 1.7 and 1.9, are reproduced below:

Place of articulation continuum--------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t Ê t4
Nasals n1  n       = n4

Figure 1.7:  Polarization scenario:  stops versus nasals

Place of articulation continuum-------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t Ê t4
Nasals n1 n = n4

Figure 1.9:  Gestural economy scenario:  stops versus nasals
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To summarize the results found for these speakers, Figure 3.44 shows each of

the graphs for percentile results, turned clockwise by 90 degrees in order to simulate the

schematic continua in Figures 1.7 and 1.9 (error bars have been suppressed for clarity.)
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Figure 3.44:  Summary of results:  stops (top rows) versus nasals (bottom rows.)

In the first and third panels, the means as plotted appear to show slightly

expanded continua for stops vis-a-vis nasals.  In the middle panel, the spans between

maximum and minimum values are very similar, although the nasals seem to show less

overlap and perhaps better dispersion within the continuum.  However, these small

visible differences are nevertheless statistically insignificant.  Because we have found

that there is no statistical difference between stops and nasals for any Place category on

any of the tests done here, we conclude that the same oral gesture is used for stops and

nasals of a given Place category.

In the Malayalam scenario outlined in Chapter One, it was suggested that in

order to make potentially weaker nasals more auditorily robust, speakers might

articulate them more divergently on the place continuum.  For W. Arrernte, this is not

found to be the case.  Instead, gestural economy is suggested by these results.  The

perception of nasals vis-a-vis stops will be examined in Chapter Four.  Meanwhile, in
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the following discussion of palatographic results for contrastive versus non-contrastive

apicals, we will consider data for coronals of a given Place category together, regardless

of Manner.

3.6.2  Initial versus Medial Differences

We have thus far observed that Manner of articulation does not affect Place of

articulation for the palatographic measurements considered here.  What follows is a

similar comparison of initial versus medial consonants, in order to determine whether

Position in word affects Place.  The purpose of this analysis is to determine whether the

comparison between contrastive and non-contrastive apicals is an appropriate one to

make.  Recall that contrastive apicals only occur medially, whereas non-contrastive

apicals only occur initially (Table 1.1.)  It may be that these segments involve

differences simply because of an overall effect of position in word, whether or not they

involve different numbers of contrasts.  (Keating et al. 1999, find that initial segments

tend to show strengthening compared with medial segments.  One of the correlates of

strengthening is a larger tongue contact area for consonant segments.)  In order to

separate the potential effects of these influences, we will examine the laminals, which

involve the same numbers of contrasts in initial and medial positions.  Figure 3.45

shows a summary of results of ANOVA on the laminal coronals.  In the lefthand

column, graphs for millimeter values are shown, while in the righthand column, graphs

for percentile values are shown.  Rows show results for frontmost contact, length of

contact and back cavity index, respectively.  Within each graph, the x-axis shows mean

values and 95% confidence intervals for initial laminals and medial laminals, with a pair

of bars for each initial and medial measure.  Laminal dentals are shown on the left of
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Figure 3.45:  Results of ANOVA for effect of position in word on palatographic
measurements in laminals.  Dentals are the lefthand members of each pair of bars.
Palatoalveolars are the righthand members.
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each pair (unshaded), while laminal palatoalveolars are shown on the right (shaded.)

Probabilities that differences are due to chance are shown beneath each graph.

These results indicate that initial laminals are neither strengthened nor weakened

vis-a-vis medial laminals.  Means and ranges of variation do not differ significantly

depending on position in word, in any of the six comparisons done here.  Thus, because

laminals provide the closest available control case, we will infer that the absence of

positive evidence for initial strengthening/weakening of laminals can be extended to the

apicals.  We will take the comparison of non-contrastive and contrastive apicals to be an

appropriate one, and assume that results are not an artifact of position.  Moreover,

because they are not statistically differentiable, results for initial and medial laminals

will be shown together in the following section.  Let us now consider each of the three

measures in turn, comparing non-contrastive apicals, contrastive apicals, and laminals.

3.6.3  Contrastive versus Non-Contrastive Apicals

The effect of coronal Place category on the three measures was submitted to

ANOVA.  For each measure, means are given, followed by results of pairwise

comparisons and significance levels.  For the post hoc comparisons, the three

differences in significance between raw and relative values are shown by shaded cells.

Numerical results are followed by graphical summaries.  For each graph, the x-

axis shows the five place categories, with non-contrastive apicals placed between the

contrastive apicals for ease of comparison.  Apical categories are shown with shaded

bars, while laminals are shown unshaded.  Categories which are not statistically

differentiable from each other in pairwise comparisons are grouped with one or more of

the ‘approximately equivalent’ signs , , or ~.
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3.6.3.1  Measure ‘a’:  Frontmost Contact

Table 3.3:  Means for Frontmost Contact in millimeters.

Place Category Count Mean Std Deviation
laminal dental 20 -.007 1.031
apical alveolar 10 5.411 2.627
non-contrastive apical 10 5.754 2.335
apical postalveolar 15 10.369 2.960
laminal palatoalveolar 20 7.231 4.317

Table 3.4:  Means for Frontmost Contact in percent.

Place Category Count Mean Std Deviation
laminal dental 20 .013 3.187
apical alveolar 10 19.507 8.648
non-contrastive apical 10 20.740 8.236
apical postalveolar 15 37.712 8.474
laminal palatoalveolar 20 25.820 14.726

Table 3.5:  Scheffe’s post hoc tests of significance.
Variable:  Frontmost contact in millimeters.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -5.418 3.612 .0005 S
lam. dental, N.C. apical -5.762 3.612 .0002 S
lam dental, ap. postalveolar -10.377 3.185 <.0001 S
lam. dental, lam. pal-alv. -7.239 2.949 <.0001 S
ap. alveolar, N.C. apical -.343 4.171 .9994
ap. alveolar, ap. postalveolar -4.958 3.807 .0039 S
ap. alveolar, lam. pal-alv. -1.821 3.612 .6387
N.C. apical, ap. postalveolar -4.615 3.807 .0089 S
N.C. apical, lam. pal-alv. -1.477 3.612 .7946
ap. postalv, lam. pal-alv. 3.138 3.185 .0557
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Table 3.6:  Scheffe’s post hoc tests of significance.
Variable:  Frontmost contact in percent.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -19.494 11.901 .0001 S
lam. dental, N.C. apical -20.727 11.901 <.0001 S
lam dental, ap. postalveolar -37.699 10.495 <.0001 S
lam. dental, lam. pal-alv. -25.807 9.717 <.0001 S
ap. alveolar, N.C. apical -1.233 13.742 .9992
ap. alveolar, ap. postalveolar -18.205 12.544 .0009 S
ap. alveolar, lam. pal-alv. -6.313 11.901 .5917
N.C. apical, ap. postalveolar -16.972 12.544 .0024 S
N.C. apical, lam. pal-alv. -5.080 11.901 .7677
ap. postalv, lam. pal-alv. 11.892 10.495 .0176 S
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Figure 3.46:  Frontmost contact in millimeters for coronal Place categories
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Figure 3.47: Frontmost contact in percent for coronal Place categories

Tables 3.3 through 3.6 and Figures 3.46 and 3.47 show results for frontmost

contact.  Measurements on the y-axis are reported as millimeters in Figure 3.46, and as

percent of the vertical calibration line in Figure 3.47.  For both raw and relative

measures, the overall effect of Place is highly significant (raw values:  F(4,70)=29.44,

p<.0001; relative values:  F(4,70)=35.46, p<.0001.)

As expected, laminal dentals have contact the furthest forward of the five

segment categories.  (Bars do not appear for the laminal dental category in Figures 3.46

and 3.47 because means are so close to zero in both cases.)  In pairwise comparisons,

laminal dentals differ significantly from each of the other Place categories.  The apical

alveolar and non-contrastive apical categories are not statistically differentiable (raw:

p=.9994; relative:  p=.9994.)  Both categories are statistically differentiable from the

apical postalveolar.
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The front edge of the apical postalveolar is further back than that of any of the

other Place categories.  Pairwise comparisons involving postalveolars show significant

differences in all comparisons but one:  raw values for apical postalveolars and laminal

palatoalveolars do not quite reach significance (p=.0557.)  This is indicated by the 

symbol in these two cells.

The laminal palatoalveolar is not distinct in frontmost contact from the alveolar

and non-contrastive apicals on this measure, as shown by the symbol in each cell.

3.6.3.2  Measure ‘b’:  Length of Contact

Table 3.7:  Means for Length of Contact in millimeters.

Place Category Count Mean Std Deviation
laminal dental 20 11.658 3.555
apical alveolar 10 4.140 1.475

non-contrastive apical 10 4.702 1.788
apical postalveolar 15 7.445 2.968

laminal palatoalveolar 20 14.468 6.364

Table 3.8:  Means for Length of Contact in percent.

Place Category Count Mean Std Deviation
laminal dental 20 41.683 10.592
apical alveolar 10 15.075 5.946
non-contrastive apical 10 17.270 6.987
apical postalveolar 15 27.770 11.410
laminal palatoalveolar 20 51.203 21.396
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Table 3.9:  Scheffe’s post hoc tests of significance.
Variable:  Length of contact in millimeters.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar 7.518 5.034 .0006 S
lam. dental, N.C. apical 6.956 5.034 .0018 S
lam dental, ap. postalveolar 4.212 4.439 .0720
lam. dental, lam. pal-alv. -2.810 4.110 .3315
ap. alveolar, N.C. apical -.562 5.813 .9989
ap. alveolar, ap. postalveolar -3.305 5.306 .4290
ap. alveolar, lam. pal-alv. -10.328 5.034 <.0001 S
N.C. apical, ap. postalveolar -2.743 5.306 .6157
N.C. apical, lam. pal-alv. -9.766 5.034 <.0001 S
ap. postalv, lam. pal-alv. -7.023 4.439 .0002 S

Table 3.10:  Scheffe’s post hoc tests of significance.
Variable:  Length of contact in percent.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar 26.608 16.960 .0003 S
lam. dental, N.C. apical 24.413 16.960 .0010 S
lam dental, ap. postalveolar 13.913 14.958 .0818
lam. dental, lam. pal-alv. -9.519 13.848 .3261
ap. alveolar, N.C. apical -2.195 19.584 .9981
ap. alveolar, ap. postalveolar -12.695 17.878 .2932
ap. alveolar, lam. pal-alv. -36.128 16.960 <.0001 S
N.C. apical, ap. postalveolar -10.500 17.878 .4904
N.C. apical, lam. pal-alv. -33.933 16.960 <.0001 S
ap. postalv, lam. pal-alv. -23.432 14.958 .0003 S
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Figure 3.48:  Length of contact in millimeters for coronal Place categories
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Figure 3.49:  Length of contact in percent  for coronal Place categories
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Results for contact length are shown in Tables 3.7 through 3.10 and Figures 3.48

and 3.49.  In Figure 3.48 the ordinate shows contact length in millimeters, while in

Figure 3.49 the ordinate indicates contact length in percent of the vertical calibration

line.  Overall results are highly significant (F[4,70]=17.28, p<.0001 for millimeter

values; F[4,70]=18.31, p<.0001 for percent values.)  As expected, we find that the

laminal categories have much broader midline contact than the apical categories.

However, the two laminal categories are not statistically differentiable from each other,

as indicated by the symbol  (p=.3315 for raw values, p=.3261 for percent values.)

Neither are the apical alveolar and non-contrastive apical differentiable on this measure,

as shown by the symbol  (p=.9989 for raw values, p=.9981 for relative values.)  Thus,

two clear groupings emerge for length of contact; a short contact group ( ) and a long

contact group ( ).  The apical postalveolar falls in between, with a mean contact length

of 7.4 mm (27.8%).  It is not statistically differentiable from the other apicals, but at the

same time, it cannot quite be distinguished from the laminal dentals (p=.0720 for raw

values, p=.0818 for percent values.)

3.6.3.3  Measure ‘c’:  Back Cavity Index

Table 3.11:  Means for Back Cavity Index in millimeters squared.

Place Category Count Mean Std Deviation
laminal dental 20 352.152 109.658
apical alveolar 10 477.990 134.977
non-contrastive apical 10 447.903 142.774
apical postalveolar 14 196.298 85.877
laminal palatoalveolar 19 111.139 78.736
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Table 3.12:  Means for Back Cavity Index in percent.

Place Category Count Mean Std Deviation
laminal dental 20 46.555 10.540
apical alveolar 10 63.400 15.785
non-contrastive apical 10 61.120 15.463
apical postalveolar 14 26.022 10.937
laminal palatoalveolar 19 14.053 8.911

Table 3.13:  Scheffe’s post hoc tests of significance.
Variable:  Back Cavity Index in millimeters squared.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -125.837 131.628 .0685
lam. dental, N.C. apical -95.751 131.628 .2690
lam dental, ap. postalveolar 155.854 118.430 .0035 S
lam. dental, lam. pal-alv. 241.013 108.879 <.0001 S
ap. alveolar, N.C. apical 30.086 151.991 .9827
ap. alveolar, ap. postalveolar 281.692 140.716 <.0001 S
ap. alveolar, lam. pal-alv. 366.851 132.777 <.0001 S
 N.C. apical, ap. postalveolar 251.605 140.716 <.0001 S
N.C. apical, lam. pal-alv. 366.765 132.777 <.0001 S
ap. postalv, lam. pal-alv. 85.159 119.707 .2909

Table 3.14:  Scheffe’s post hoc tests of significance.
Variable:  Back Cavity Index in percent.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -16.845 14.487 .0138 S
lam. dental, N.C. apical -14.565 14.487 .0481 S
lam dental, ap. postalveolar 20.533 13.035 .0003 S
lam. dental, lam. pal-alv. 32.502 11.983 <.0001 S
ap. alveolar, N.C. apical 2.280 16.729 .9958
ap. alveolar, ap. postalveolar 37.378 15.488 <.0001 S
ap. alveolar, lam. pal-alv. 49.348 14.614 <.0001 S
N.C. apical, ap. postalveolar 35.098 15.488 <.0001 S
N.C. apical, lam. pal-alv. 47.067 14.614 <.0001 S
ap. postalv, lam. pal-alv. 11.969 13.175 .0945
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Figure 3.50:  Back cavity index in millimeters  for coronal Place categories
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Figure 3.51:  Back cavity index in percent  for coronal Place categories
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Tables 3.11 through 3.14 show central tendencies and numerical results of

ANOVA for the Back Cavity variable.  In Figures 3.50 and 3.51, y-axes show the back

cavity index in millimeters squared and as percentages of calibration area ‘r’ (refer to

Figure 3.24.)  As in the preceding tests of the effect of Place, overall significance values

were high (raw values:  F(4,68)=30.6, p<.0001; relative values:  F(4,68)=46.85,

p<.0001.)

Here we find that once again the apical alveolars and non-contrastive apicals

cannot be statistically differentiated (p=.9827 for mm values, p=.9958 for percent

values.)  Apical postalveolars and laminal palatoalveolars also behave as a group

(p=.2909 for mm values, p=.0945 for percent values.)  Laminal dentals group with the

other [+anterior] segments when raw values are considered, but are statistically

differentiable from all other categories when relative values are considered.

3.6.3.4  Contrastive versus Non-Contrastive Apicals:  Analysis and Interpretation

In each comparison of contrastive apicals with non-contrastive apicals in the

results above, apical alveolars and non-contrastive apicals are indistinguishable from

each other.  On two of the three measures, both are statistically distinct from apical

postalveolars.  In the case of Length of Contact, all apicals behave as a group.  Once

again, let us review the predictions discussed in Chapter One:

Place dimension ---------------------------------------------------------------------------->
Non-contrastive
apical segment T

Contrastive
apical segments t<---------------------- • ---------------------->Ê

Figure 1.6:  Arrernte Polarization Scenario--contrastive versus non-contrastive apicals
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Place dimension ---------------------------------------------------------------------------->
Non-contrastive
apical segment T

Contrastive
apical segments                    t |-----------------| Ê

or

Non-contrastive
apical segment T

Contrastive
apical segments                                          t |----------------------| Ê

Figure 1.8a (top) and 1.8b (bottom):  Arrernte Gestural Economy Scenario--contrastive versus
non-contrastive apicals

The results found here are compatible with the predictions of gestural economy,

and in particular, scenario 8b, in which the less displaced articulation is re-used.

As a side issue, for Length of Contact it was observed that apicals form a short

contact group and laminals form a long contact group (though postalveolar apicals

could not be statistically significantly distinguished from dental laminals.)  Although

significant differences in length of midline contact between the two laminals or among

the three apicals would not be surprising, the coronal categories seemed to group

themselves along the lines of feature values for Apical, on this variable.  Similarly,

Back Cavity Index tended to group the coronal categories along the lines of the feature

Anterior.  These results present the question of whether polarization and gestural

economy scenarios could be extended from Places of Articulation, as in our hypotheses

here, to the component features of coronal Places.  However, when we examine

Frontmost Contact, we fail to find a division of categories along featural lines (for

example, the apical alveolar and laminal palatoalveolar categories group together for

this variable, even though they differ in values for both Apical and Anterior.)
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In order to examine more closely the possibility that coronal Place targets may

be defined by features, a further variable was examined by ANOVA:  the midpoint of

contact in the midline.  Though this measure is less likely to be associated directly with

acoustic effects, it may approximate an intended articulatory Place target more closely

than Frontmost Contact.  Results are shown in Tables 3.15 through 3.18, and

summarized graphically in Figures 3.52 and 3.53.

Table 3.15:  Means for Midpoint of Contact in millimeters.

Place Category Count Mean Std Deviation
laminal dental 20 5.821 1.562
apical alveolar 10 7.481 2.920

non-contrastive apical 10 8.105 2.730
apical postalveolar 15 14.092 2.668

laminal palatoalveolar 20 14.466 5.158

Table 3.16:  Means for Midpoint of Contact in percent.

Place Category Count Mean Std Deviation
laminal dental 20 20.855 4.821
apical alveolar 10 27.045 9.238

non-contrastive apical 10 29.375 9.234
apical postalveolar 15 51.597 7.867

laminal palatoalveolar 20 51.421 17.114
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Table 3.17:  Scheffe’s post hoc tests of significance.
Variable:  Midpoint of Contact in millimeters.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -1.660 4.131 .8051
lam. dental, N.C. apical -2.284 4.131 .5516
lam dental, ap. postalveolar -8.271 3.643 <.0001 S
lam. dental, lam. pal-alv. -8.644 3.373 <.0001 S
ap. alveolar, N.C. apical -.624 4.770 .9964
ap. alveolar, ap. postalveolar -6.611 4.354 .0005 S
ap. alveolar, lam. pal-alv. -6.985 4.131 <.0001 S
 N.C. apical, ap. postalveolar -5.987 4.354 .0019 S
N.C. apical, lam. pal-alv. -6.361 4.131 .0004 S
ap. postalv, lam. pal-alv. -.373 3.643 .9986

Table 3.18:  Scheffe’s post hoc tests of significance.
Variable:  Midpoint of Contact in percent.

Comparison Mean
Diff.

Critical
Diff.

P-value Significant?

lam. dental, ap. alveolar -6.190 13.430 .7129
lam. dental, N.C. apical -8.521 13.430 .4097
lam dental, ap. postalveolar -30.743 11.844 <.0001 S
lam. dental, lam. pal-alv. -30.567 10.966 <.0001 S
ap. alveolar, N.C. apical -2.331 15.508 .9939
ap. alveolar, ap. postalveolar -24.553 14.157 <.0001 S
ap. alveolar, lam. pal-alv. -24.377 13.430 <.0001 S
N.C. apical, ap. postalveolar -22.222 14.157 .0003 S
N.C. apical, lam. pal-alv. -22.046 13.430 .0001 S
ap. postalv, lam. pal-alv. .176 11.844 >.9999
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Figure 3.52:  Midpoint of Contact in millimeters  for coronal Place categories
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Figure 3.53:  Midpoint of Contact in percent  for coronal Place categories
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For both millimeter and percentile measures, the overall effect of coronal Place

category on the midpoint of contact is highly significant (raw values:  F(4,70)=24.016,

p<.0001; relative values:  F(4,70)=29.431, p<.0001.)  Moreover, pairwise comparisons

show robustly significant differences in cases where the paired categories have different

values for Anterior, but show very large p-values, in some cases nearly approaching

unity, in cases where the paired categories share the same value for Anterior.  Thus,

though tangential to our discussion of the relative weightings of polarization and

gestural economy as presented above, here is some evidence that gestural economy may

also apply to component features of coronal Place categories.  Mean midpoints of

contact for the two [+anterior] categories are not statistically differentiable, and the

mean midpoints of contact for the two [-anterior] categories are nearly identical.  Note

once again that the apical which is not contrastive for Anterior groups with the

[+anterior] categories.

3.6.4  Summary of Palatographic Results

In this part of the study we examined evidence for relative weighting of

polarization and gestural economy in the domain of consonant Place of Articulation, by

quantitatively characterizing palatograms of W. Arrernte coronal articulations.  Stops

and nasals of given Place categories were compared on three measures, and found not to

differ from each other along any of these measures.  These results indicate a heavy

relative weighting of gestural economy.  Results of four articulatory measures were

examined, to analyze differences between contrastive and non-contrastive apicals.  In

comparing length of contact in contrastive versus non-contrastive apicals, results were

compatible with both polarization and gestural economy, and so did not bear on the

issue of how these derivative principles may compromise or be weighted.  However,
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results for frontmost contact, cavity behind constriction and midpoint of contact

indicated that in terms of the cavities in front of and behind the constriction, and

arguably in terms of the articulatory target itself, alveolar and non-contrastive apicals

are not statistically differentiable, which is evidence for re-use of gestures.  Moreover,

the fact that the alveolar rather than the postalveolar was used in the greater number of

contexts indicates the re-use of less displaced (articulatory easy) gestures.  These results

point to a relatively high weighting of articulatory ease and pattern congruity in

consonant Place.

Categories sharing values for Anterior seemed to be distinguished simply on the

basis of length of contact (apicality) in these results, with the same center point of

contact on the roof of the mouth.  Similarly, categories sharing values for Apical

seemed to be distinguished only by their value for Anterior, but not by length of

contact.  While not the main focus of this study, these results are a first indication that

gestural economy may extend to component features of consonant Place categories.

3.7  Results:  Linguography

The categorized set of data discussed under Data Reduction of Linguograms was

submitted to chi squared analysis, to determine whether phonological types could be

differentiated on the basis of descriptive variables in a statistically significant manner.

As the null hypothesis we assumed that phonological groupings were unrelated to these

variables.  Under the null hypothesis, descriptions of linguograms belonging to a

common phonological grouping should be randomly and evenly distributed among the

categories within a descriptive variable.

As in the previous section which treats palatographic results, we will first

examine differences in Manner, and then differences in Place.
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3.7.1  Stops versus Nasals

Because results were similar for rear point of contact, coronal width at tongue

front, and shape, we will focus on these variables before turning to results for midline

length.  There was no difference in the behavior of stops and nasals with regard to rear

contact, coronal width or shape.  In each case, the observed and expected frequencies of

distribution among variable categories did not differ significantly between stops and

nasals; manner is unrelated to the three variables.

3.7.1.1.  Rear Point of Contact

Recall from Table 3.1 that our data do not include a laminal palatoalveolar nasal

in initial position.  Thus, we will first restrict our attention to the balanced subset of

medial stops and nasals.  There was no significant difference between stops and nasals

in rear point of contact (df:6, Χ2=2.600, p=.8571.)  Observed frequencies for each cell

are very near expected values given the null hypothesis, as shown in Tables 3.19a and b.

(Note that observed frequencies reported throughout this section are integers by

definition. On the other hand, expected values can be fractional because they depend on

row and column totals, and on the number of categories in a given test.  However, row

and column totals in every case are integers.  The three decimal places shown are not

salient, but are automatically generated by the statistical program used here.)



115

Table 3.19a:  Observed frequencies for
distribution of medial nasals and stops.
Variable:  rear point of contact.

Table 3.19b:  Expected values for
distribution of medial nasals and stops.
Variable:  rear point of contact.

4 6 10

10 8 18

6 6 12

1 1 2

9 9 18

5 8 13

5 2 7

40 40 80

N S Totals

sublingual

vertex

apex

midblade

backofblade

tongue front

tongue center

Totals

Observed Frequencies: Rear Contact
Medial Nasals and Stops

5.000 5.000 10.000

9.000 9.000 18.000

6.000 6.000 12.000

1.000 1.000 2.000

9.000 9.000 18.000

6.500 6.500 13.000

3.500 3.500 7.000

40.000 40.000 80.000

N S Totals

sublingual

vertex

apex

midblade

backofblade

tongue front

tongue center

Totals

Expected Frequencies: Rear Contact
Medial Nasals and Stops

A chi squared test on initial stops and nasals, excluding laminal palatoalveolars,

revealed similar results: no statistically significant effect of manner (df:5, Χ2=7.535,

p=.1838.)

Table 3.20a:  Observed frequencies for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  rear point of contact.

Table 3.20b:  Expected values for
distribution of initial  nasals and stops
(laminal palatoalveolars excluded.)
Variable:  rear point of contact.

Observed Frequencies: Rear Contact 
Initial Nasals and Stops
[-Ant] Laminals excluded

0 1 1

0 4 4

9 5 14

1 0 1

1 2 3

9 8 17

20 20 40

N S Totals

sublingual

vertex

apex

frontofblade

midblade

backofblade

Totals

Expected Frequencies: Rear Contact 
Initial Nasals and Stops
[-Ant] Laminals excluded

.500 .500 1.000

2.000 2.000 4.000

7.000 7.000 14.000

.500 .500 1.000

1.500 1.500 3.000

8.500 8.500 17.000

20.000 20.000 40.000

N S Totals

sublingual

vertex

apex

frontofblade

midblade

backofblade

Totals
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3.7.1.2  Coronal Width at Tongue Front

No significant differences were found in the behavior of medial stops and

nasals, or in that of initial stops and nasals.  Results for medials are given in Tables

3.21a and b (df:3, Χ2=5.467, p=.1406.)

Table 3.21a:  Observed frequencies for
distribution of medial nasals and stops.
Variable:  coronal width at tongue front.

Table 3.21b:  Expected values for
distribution of medial nasals and stops.
Variable:  coronal width at tongue front.

Observed Frequencies: Coronal Width 
Medial Nasals and Stops

1 7 8

12 11 23

2 5 7

11 9 20

26 32 58

N S Totals

none

narrow

medium

wide

Totals

Expected Frequencies: Coronal Width 
Medial Nasals and Stops

3.586 4.414 8.000

10.310 12.690 23.000

3.138 3.862 7.000

8.966 11.034 20.000

26.000 32.000 58.000

N S Totals

none

narrow

medium

wide

Totals

Results of the chi squared test for initials (excluding laminal palatoalveolars) follow in

Tables 3.22a and b (df:3, Χ2=3.130, p=.3721.)

Table 3.22a:  Observed frequencies for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  coronal width at tongue front.

Table 3.22b:  Expected values for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  coronal width at tongue front.

Observed Frequencies: Coronal Width 
Initial Nasals and Stops
[-Ant] Laminals excluded

3 1 4

10 8 18

3 7 10

2 1 3

18 17 35

N S Totals

none

narrow

medium

wide

Totals

Expected Frequencies: Coronal Width 
Initial Nasals and Stops
[-Ant] Laminals excluded

2.057 1.943 4.000

9.257 8.743 18.000

5.143 4.857 10.000

1.543 1.457 3.000

18.000 17.000 35.000

N S Totals

none

narrow

medium

wide

Totals
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3.7.1.3  Shape

Once again, there was no difference in the behavior of stops and nasals, either in

the medials or in initials excluding laminal palatoalveolars.  Results for medials (df:3,

Χ2=.362, p=.9480) and initials (df:2, Χ2=1.846, p=.3973) respectively are given in

Tables 3.23 and 3.24.

Table 3.23a:  Observed frequencies for
distribution of medial nasals and stops.
Variable:  shape.

Table 3.23b:  Expected values for
distribution of medial nasals and stops.
Variable:  shape.

Observed Frequencies: Shape 
Medial Nasals and Stops

7 9 16

9 10 19

1 2 3

10 10 20

27 31 58

N S Totals

parallel lines

u

triangle

butterfly

Totals

Expected Frequencies: Shape 
Medial Nasals and Stops

7.448 8.552 16.000

8.845 10.155 19.000

1.397 1.603 3.000

9.310 10.690 20.000

27.000 31.000 58.000

N S Totals

parallel lines

u

triangle

butterfly

Totals

Table 3.24a:  Observed frequencies for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  shape.

Table 3.24b:  Expected values for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  shape.

Observed Frequencies: Shape 
Initial Nasals and Stops
[-ant] laminals excluded

0 1 1

7 7 14

6 3 9

13 11 24

N S Totals

parallel lines

u

triangle

Totals

Expected Frequencies: Shape 
Initial Nasals and Stops
[-ant] laminals excluded

.542 .458 1.000

7.583 6.417 14.000

4.875 4.125 9.000

13.000 11.000 24.000

N S Totals

parallel lines

u

triangle

Totals



118

3.7.1.4  Midline Length

To summarize results thus far, on three of the four criteria used to attempt to

differentiate among phonological categories in the linguograms, the stops and nasals

behave as a group.  This result was also true of the subset of initial stops and nasals in

the case of the fourth variable, midline length (df:4, Χ2=5.867, p=.2093.)  However, the

medial nasals did show significant differences from the medial stops, on the measure of

midline length (df:4, Χ2=10.902, p=.0277.)  Results for medials and initials on this

variable are shown in Tables 3.25 and 3.26 respectively.

Table 3.25a:  Observed frequencies for
distribution of medial nasals and stops.
Variable:  midline length.

Table 3.25b:  Expected values for
distribution of medial nasals and stops.
Variable:  midline length.

Observed Frequencies: Midline Length 
Medial Nasals and Stops

5 4 9

14 14 28

3 12 15

13 10 23

5 0 5

40 40 80

N S Totals

vertex

short

medium

long

xlong

Totals

Expected Frequencies: Midline Length 
Medial Nasals and Stops

4.500 4.500 9.000

14.000 14.000 28.000

7.500 7.500 15.000

11.500 11.500 23.000

2.500 2.500 5.000

40.000 40.000 80.000

N S Totals

vertex

short

medium

long

xlong

Totals
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Table 3.26a:  Observed frequencies for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  midline length.

Table 3.26b:  Expected values for
distribution of initial nasals and stops
(laminal palatoalveolars excluded.)
Variable:  midline length.

Observed Frequencies: Midline Length 
Initial Nasals and Stops
[-ant] laminals excluded

0 4 4

9 6 15

2 3 5

8 7 15

1 0 1

20 20 40

N S Totals

vertex

short

medium

long

xlong

Totals

Expected Frequencies: Midline Length 
Initial Nasals and Stops
[-ant] laminals excluded

2.000 2.000 4.000

7.500 7.500 15.000

2.500 2.500 5.000

7.500 7.500 15.000

.500 .500 1.000

20.000 20.000 40.000

N S Totals

vertex

short

medium

long

xlong

Totals

In Table 3.25a, we find that more nasals fall into the ‘long’ and ‘extra long’

categories than do stops.  This is puzzling, given the results for the palatograms, which

showed no significant effect of manner on length of contact.  We will pursue the

question of which nasal place categories are longer than their corresponding stop

categories in the following section, where we focus on differences in Place of

articulation.

3.7.2  Place of Articulation

In the following discussion we will not conflate manner categories, in order to

be able to observe differences in distribution between nasals and stops of a given Place

category.  Standard Arrernte orthography (refer to Table 2.2) is used in the column

heads in Tables 3.27 through 3.41.

3.7.2.1  Midline length

Observed and expected frequencies for the variable midline length, for medial

stops and nasals, are given in Table 3.27a and b.  Results are highly significant (df:28,
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Χ2=100.434, p<.0001.)  In order to show how phonological categories distribute

themselves with respect to descriptive categories within this variable, frequencies of

more than two are highlighted.

Table 3.27a:  Observed frequencies for distribution of medial nasals and stops by Place.
Variable:  midline length.  Frequencies of more than two are highlighted.

th nh t n rt rn ty ny Totals
vertex 0 0 4 4 0 1 0 0 9
short 0 0 5 6 7 8 2 0 28

medium 4 1 1 0 3 1 4 1 15
long 6 8 0 0 0 0 4 5 23

xlong 0 1 0 0 0 0 0 4 5
Totals 10 10 10 10 10 10 10 10 80

Table 3.27b:  Expected values for distribution of medial nasals and stops by Place.
Variable:  midline length.

Expected Frequencies: Midline Length 
Medial Nasals and Stops by Phonological Category

1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 9.000

3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 28.000

1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875 15.000

2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 23.000

.625 .625 .625 .625 .625 .625 .625 .625 5.000

10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 80.000

th nh t n rt rn ty ny Totals

vertex

short

medium

long

xlong

Totals

Analogous results for the initial stops and nasals follow.  Again, results are

highly significant (df:12, Χ2=44.267, p<.0001.)
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Table 3.28a:  Observed frequencies for distribution of initial nasals and stops by Place.
Variable:  midline length.  Frequencies of more than two are highlighted.

th nh #T #N Totals
vertex 0 0 4 0 4
short 1 0 5 9 15

medium 2 1 1 1 5
long 7 8 0 0 15

xlong 0 1 0 0 1
Totals 10 10 10 10 40

Table 3.28b:  Expected values for distribution of initial nasals and stops by Place.
Variable:  midline length.

Expected Frequencies: Midline Length 
Initial Nasals and Stops by Phonological Category
[-ant] laminals excluded

1.000 1.000 1.000 1.000 4.000

3.750 3.750 3.750 3.750 15.000

1.250 1.250 1.250 1.250 5.000

3.750 3.750 3.750 3.750 15.000

.250 .250 .250 .250 1.000

10.000 10.000 10.000 10.000 40.000

th nh #T #N Totals

vertex

short

medium

long

xlong

Totals

For these results, observe that the data divide themselves along the lines of the

feature Apical.  The [+apical] stops and nasals fall into the ‘vertex’, ‘short’ and

occasionally ‘medium’ categories, while the [-apical] stops and nasals fall into the

‘long’, ‘extra long’ and occasionally ‘medium’ categories.  This accords well with

palatographic results for length of contact, which also differentiates stops and nasals

along the lines of the feature Apical.

As a side point, we return to the question of which nasals are longer than their

stop counterparts.  From Tables 3.27a and 3.28a we see that only the laminal nasals

have the tendency to be categorized in the ‘long’ and ‘extra long’ categories more often
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than their corresponding stops; this is not true of the [+apical] nasals.  Returning to the

polarization hypothesis explicated in Chapter One, we predicted that if differences were

found with respect to manner, they would show polarization of the nasals vis-a-vis the

stops.  On the measure of midline length we might expect polarization to translate into

laminal dental nasals that are shorter than laminal dental stops, and laminal

palatoalveolar nasals that are longer than laminal palatoalveolar stops, as in Figure 1.7,

reproduced for the laminals below.

Place of articulation continuum--------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t4
Nasals n1 n4

Figure 1.7:  Polarization scenario for laminal nasals versus stops.

However, results on this measure instead suggest a uniform direction of difference

between laminal nasals and stops:

Place of articulation continuum--------------------------------------------------------->
Phonetic
Category

{dental} {alveolar} {postalveolar} {palatal}

Stops t1 t4
Nasals n1 n4

Figure 3.54:  Laminal stops versus laminal nasals in W. Arrernte linguograms on the
variable midline length.

The question still remains:  how can nasals and stops differ significantly from

each other in the linguographic evidence, when they do not differ in the palatographic

evidence?  We return to this issue under Linguography:  Analysis and Interpretation.
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3.7.2.2  Rear point of contact

For rear contact, results for medials as well as initials are highly statistically

significant.  Tables 3.29a and b show results for medials (df:42, Χ2=214.845, p<.0001.)

Table 3.29a:  Observed frequencies for distribution of medial nasals and stops by Place.
Variable:  rear contact.  Frequencies of more than two are highlighted.

th nh t n rt rn ty ny Totals
sublingual 0 0 0 0 6 4 0 0 10

vertex 0 0 4 4 4 6 0 0 18
apex 0 0 6 6 0 0 0 0 12

midblade 1 1 0 0 0 0 0 0 2
backofblade 9 9 0 0 0 0 0 0 18
tonguefront 0 0 0 0 0 0 8 5 13

tonguecenter 0 0 0 0 0 0 2 5 7
Totals 10 10 10 10 10 10 10 10 80

Table 3.29b:  Expected values for distribution of medial nasals and stops by Place.
Variable:  rear contact.

Expected Frequencies:  Rear Contact
Medial Nasals and Stops by Phonological Category

1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 10.000

2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 18.000

1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 12.000

.250 .250 .250 .250 .250 .250 .250 .250 2.000

2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 18.000

1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625 13.000

.875 .875 .875 .875 .875 .875 .875 .875 7.000

10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 80.000

th nh t n rt rn ty ny Totals

sublingual

vertex

apex

midblade

backofblade

tongue front

tongue center

Totals

Tables 3.30a and b show results for initials (df:15, Χ2=55.070, p<.0001.)
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Table 3.30a:  Observed frequencies for distribution of initial nasals and stops by Place.
Variable:  rear contact.  Frequencies of more than two are highlighted.

th nh #T #N Totals
sublingual 0 0 1 0 1
vertex 0 0 4 0 4
apex 0 0 5 9 14
frontofblade 0 0 0 1 1
midblade 2 1 0 0 3
backofblade 8 9 0 0 17
Totals 10 10 10 10 40

Table 3.30b:  Expected values for distribution of initial nasals and stops by Place.
Variable:  rear contact.

.250 .250 .250 .250 1.000

1.000 1.000 1.000 1.000 4.000

3.500 3.500 3.500 3.500 14.000

.250 .250 .250 .250 1.000

.750 .750 .750 .750 3.000

4.250 4.250 4.250 4.250 17.000

10.000 10.000 10.000 10.000 40.000

th nh #T #N Totals

sublingual

vertex

apex

frontofblade

midblade

backofblade

Totals

Expected Frequencies:  Rear Contact
Initial Nasals and Stops by Phonological Category
[-ant] laminals excluded

The results in Tables 3.29a and 3.30a confirm that different parts of the tongue

are involved in the articulation of different Place categories.  While a tip/rear-of-tip

distinction is plainly visible, again along the lines of the feature Apical, there are also

very consistent differences within the apical categories and within the laminal

categories.  The range for rear point of contact in the laminal dentals lies squarely

within the tongue blade, while rear contact in laminal palatoalveolars consistently

extends as far back as the tongue body.  The apical postalveolars extend only as far

back as the vertex (i.e. involve no upper surface contact in the midline at all), while
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apical alveolars extend back no further than the apex.  Note that in the non-contrastive

apicals, rear contact is in the same range as in the apical alveolars, with two exceptions:

one non-contrastive apical showed only sublingual contact while another showed

contact as far back as the front of the tongue blade.  We will return to this issue under

Contrastive versus Non-Contrastive Apicals.

3.7.2.3  Coronal Width at Tongue Front

Results for medials on the measure of coronal width were highly significant

(df:21, Χ2=82.530, p<.0001.)

Table 3.31a:  Observed frequencies for distribution of medial nasals and stops by Place.
Variable:  coronal width.

Observed Frequencies:  Coronal Width
Medial Nasals and Stops by Phonological Category

0 0 5 1 2 0 0 0 8

4 2 5 9 2 1 0 0 23

4 2 0 0 1 0 0 0 7

0 2 0 0 0 0 9 9 20

8 6 10 10 5 1 9 9 58

th nh t n rt rn ty ny Totals

none

narrow

medium

wide

Totals
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Table 3.31b:  Expected values for distribution of medial nasals and stops by Place.
Variable:  coronal width.

Expected Frequencies:  Coronal Width
Medial Nasals and Stops by Phonological Category

1.103 .828 1.379 1.379 .690 .138 1.241 1.241 8.000

3.172 2.379 3.966 3.966 1.983 .397 3.569 3.569 23.000

.966 .724 1.207 1.207 .603 .121 1.086 1.086 7.000

2.759 2.069 3.448 3.448 1.724 .345 3.103 3.103 20.000

8.000 6.000 10.000 10.000 5.000 1.000 9.000 9.000 58.000

th nh t n rt rn ty ny Totals

none

narrow

medium

wide

Totals

Note, however, the lack of available descriptions of apical postalveolars in these

data; only one nasal and five stops were described.  Because the relatively large number

of missing cells for apical postalveolars may skew results, the test was repeated with

these categories excluded.  Results for the remaining Places remain highly significant

(df:15, Χ2=76.671, p<.0001.)

Table 3.32a:  Observed frequencies for distribution of medial nasals and stops by Place.
Variable:  coronal width.  Postalveolar apicals excluded.
Frequencies of more than two are highlighted.

th nh t n ty ny Totals
none 0 0 5 1 0 0 8

narrow 4 2 5 9 0 0 23
medium 4 2 0 0 0 0 7

wide 0 2 0 0 9 9 20
Totals 8 6 10 10 9 9 58
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Table 3.32b:  Expected values for distribution of medial nasals and stops by Place.
Variable:  coronal width.  Postalveolar apicals excluded.

Expected Frequencies:  Coronal Width
Medial Nasals and Stops by Phonological Category
[-ant] apicals excluded

.923 .692 1.154 1.154 1.038 1.038 6.000

3.077 2.308 3.846 3.846 3.462 3.462 20.000

.923 .692 1.154 1.154 1.038 1.038 6.000

3.077 2.308 3.846 3.846 3.462 3.462 20.000

8.000 6.000 10.000 10.000 9.000 9.000 52.000

th nh t n ty ny Totals

none

narrow

medium

wide

Totals

Results for two initial categories included in the test do not differ significantly

(df:9, Χ2=11.685, p=.2317.)

Table 3.33a:  Observed frequencies for distribution of initial nasals and stops by Place.
Variable:  coronal width.  Frequencies of more than two are highlighted.

th nh #T #N Totals
none 0 0 1 3 4

narrow 3 5 5 5 18
medium 3 2 4 1 10

wide 1 2 0 0 3
Totals 7 9 10 9 35

Table 3.33b:  Expected values for distribution of initial nasals and stops by Place.
Variable:  coronal width.

Expected Frequencies:  Coronal Width
Initial Nasals and Stops by Phonological Category
[-ant] laminals excluded

.800 1.029 1.143 1.029 4.000

3.600 4.629 5.143 4.629 18.000

2.000 2.571 2.857 2.571 10.000

.600 .771 .857 .771 3.000

7.000 9.000 10.000 9.000 35.000

th nh #T #N Totals

none

narrow

medium

wide

Totals
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These results indicate that the laminal palatoalveolars consistently have wide

contact at the sides of the tongue behind the central stricture, which implies tongue

body raising.  In the apical alveolars, side contact is narrow or not present, which

suggests a relatively low tongue body behind the constriction.  Results for laminal

dentals indicate varying degrees of tongue body raising.

3.7.2.4  Shape

The highly significant results of the chi squared test for medial stops and nasals

follow in Table 3.34a and b (df:21, Χ2=121.253, p<.0001.)  Results for initials

excluding laminal palatoalveolars were also significant, and are given in Tables 3.35a

and b (df:6, Χ2=21.314, p=.0016.)

Table 3.34a:  Observed frequencies for distribution of medial nasals and stops by Place.
Variable:  shape.  Frequencies of more than two are highlighted.

th nh t n rt rn ty ny Totals
parallel lines 0 0 0 0 9 7 0 0 16

u 5 2 5 6 0 1 0 0 19
triangle 2 1 0 0 0 0 0 0 3

butterfly 0 0 0 0 0 0 10 10 20
Totals 7 3 5 6 9 8 10 10 58
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Table 3.34b:  Expected values for distribution of medial nasals and stops by Place.
Variable:  shape.

Expected Frequencies:  Shape
Medial Nasals and Stops by Phonological Category

1.931 .828 1.379 1.655 2.483 2.207 2.759 2.759 16.000

2.293 .983 1.638 1.966 2.948 2.621 3.276 3.276 19.000

.362 .155 .259 .310 .466 .414 .517 .517 3.000

2.414 1.034 1.724 2.069 3.103 2.759 3.448 3.448 20.000

7.000 3.000 5.000 6.000 9.000 8.000 10.000 10.000 58.000

th nh t n rt rn ty ny Totals

parallel lines

u

triangle

butterfly

Totals

Table 3.35a:  Observed frequencies for distribution of initial nasals and stops by Place.
Variable:  shape.  Frequencies of more than two are highlighted.

th nh #T #N Totals
parallel lines 0 0 1 0 1

u 2 0 5 7 14
triangle 3 6 0 0 9
Totals 5 6 6 7 24

Table 3.35b:  Expected values for distribution of initial nasals and stops by Place.
Variable:  shape.

Expected Frequencies:  Shape
Initial Nasals and Stops by Phonological Category
[-ant] laminals excluded

.208 .250 .250 .292 1.000

2.917 3.500 3.500 4.083 14.000

1.875 2.250 2.250 2.625 9.000

5.000 6.000 6.000 7.000 24.000

th nh #T #N Totals

parallel lines

u

triangle

Totals

Again, laminal palatoalveolars present the clearest results; 100% of those shown

here are ‘butterfly’ shaped.  (This is also true of the 20 initial laminal palatoalveolar

stops and pre-stopped nasals which were excluded from consideration in these statistical
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tests.) Apical alveolars fall into the ‘u’ pattern.  Apical postalveolars fall into the

‘parallel lines’ pattern, with a single exception.  Results for laminal dentals, however,

are more variable.  While many fall into the ‘triangle’ pattern which indicates an apico-

laminal articulatory strategy, in the medials quite a few also show the ‘u’ pattern, which

indicates an interdental articulatory strategy.  This will be discussed in further detail

under Linguography:  Analysis and Interpretation.

3.7.3  Contrastive versus Non-Contrastive Apicals

For purposes of our discussion here, we will refer to apical alveolars, apical

postalveolars and non-contrastive apicals as three “categories” of apical.  Although the

issue of category membership is precisely the question at hand, we adopt this term as a

convenience.

3.7.3.1  Midline Length

Results for midline length are given in Tables 3.36a and b below.  As no

significant difference was found in the behavior of the three apical categories (df:10,

Χ2=15.758, p=.1068), a chi squared test including only the contrastive apical categories

was done.  No significant difference was found (df:6, Χ2=10.236, p=.1151.)  Thus, as is

the case for length of contact in the palatographic results above, the midline length

metric is neutral with respect to evidence for polarization or gestural economy, since the

contrastive apicals themselves behave in a non-differentiable manner.
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Table 3.36a:  Observed frequencies for distribution of apical  nasals and stops.
Variable:  midline length.  Frequencies of more than two are highlighted.

t n #T #N rt rn Totals
vertex 4 4 4 0 0 1 13
short 5 6 5 9 7 8 40

medium 1 0 1 1 3 1 7
Totals 10 10 10 10 10 10 60

Table 3.36b:  Expected frequencies for distribution of apical nasals and stops.

Variable:  midline length.

  

Expected Frequencies:  Midline Length
Apical Nasals and Stops

2.167 2.167 2.167 2.167 2.167 2.167 13.000

6.667 6.667 6.667 6.667 6.667 6.667 40.000

1.167 1.167 1.167 1.167 1.167 1.167 7.000

10.000 10.000 10.000 10.000 10.000 10.000 60.000

t n #T #N rt rn Totals

vertex

short

medium

Totals

3.7.3.2  Rear Point of Contact

Results for rear contact show significant differences among the three apical categories

(df:15, Χ2=43.259, p=.0001.)  Restricting our attention again to the pair of contrastive

apicals, a chi squared test shows significant differences between them (df:6, Χ2=23.467,

p=.0007.)  While apical alveolars extend rearward as far as the apex, apical

postalveolars extend only as far back as the vertex, and half show only sublingual

contact.  Non-contrastive apicals are not differentiable from apical alveolars on a chi

squared test of these two categories (df:9, Χ2=11.385, p=.2503.)  However, non-

contrastive apicals are quite significantly distinct from apical postalveolars (df:9,

Χ2=32.987, p=.0001.)  As mentioned above, the non-contrastive apicals show a little

more variability than either of the contrastive places.  One token records sublingual

contact, and another extends further back than the apex.
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Table 3.37a:  Observed frequencies for distribution of apical nasals and stops.
Variable: rear contact.  Frequencies of more than two are highlighted.

t n #T #N rt rn Totals
sublingual 0 0 1 0 6 4 11

vertex 4 4 4 0 4 6 22
apex 6 6 5 9 0 0 26

front of blade 0 0 0 1 0 0 1
Totals 10 10 10 10 10 10 60

Table 3.37b:  Expected frequencies for distribution of apical nasals and stops.
Variable:  rear contact.

Expected Frequencies:  Rear Contact
Apical Nasals and Stops

1.833 1.833 1.833 1.833 1.833 1.833 11.000

3.667 3.667 3.667 3.667 3.667 3.667 22.000

4.333 4.333 4.333 4.333 4.333 4.333 26.000

.167 .167 .167 .167 .167 .167 1.000

10.000 10.000 10.000 10.000 10.000 10.000 60.000

t n #T #N rt rn Totals

sublingual

vertex

apex

frontofblade

Totals

3.7.3.3  Coronal Width at Tongue Front

Results for coronal width are given below in Tables 3.38a and b.  Significant

differences were not found when all three apical categories were included in a chi

squared test (df:10, Χ2=15.671, p=.1094.)  But recall that the coronal width data do not

contain many observations of apical postalveolars.  When just alveolar and non-

contrastive apicals are included, they do show significant differences (df:6, Χ2=14.578,

p=.0238.)  Both types of apicals show tokens in which there is only narrow contact or

none at all on the sides of the tongue.  However, about 20% of non-contrastive tokens

described for this variable show a ‘medium’ amount of contact, suggesting tongue

raising behind the central constriction.  None of the apical alveolars show this thickened

contact.  This may be an indication of initial strengthening in the case of the (initial)

non-contrastive apicals.
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Table 3.38a:  Observed frequencies for distribution of apical  nasals and stops.
Variable: coronal width.  Frequencies of more than two are highlighted.

t n #T #N rt rn Totals
none 5 1 1 3 2 0 12

narrow 5 9 5 5 2 1 27
medium 0 0 4 1 1 0 6

Totals 10 10 10 9 5 1 45

Table 3.38b:  Expected frequencies for distribution of apical nasals and stops.
Variable:  coronal width.

Expected Frequencies:  Coronal Width
Apical Nasals and Stops

2.667 2.667 2.667 2.400 1.333 .267 12.000

6.000 6.000 6.000 5.400 3.000 .600 27.000

1.333 1.333 1.333 1.200 .667 .133 6.000

10.000 10.000 10.000 9.000 5.000 1.000 45.000

t n #T #N rt rn Totals

none

narrow

medium

Totals

3.7.3.4  Shape

Once again, in addition to a test of all three apical categories together, chi

squared tests involving pairs of apical categories were done.  The test on the contrastive

apicals shows very significant differences between these two categories (df:3,

Χ2=24.427, p<.0001).  Similarly, the test including all three categories reflects

significant differences (df:5, Χ2=33.961, p<.0001.)  The non-contrastive apicals are also

very significantly different from apical postalveolars (df:3, Χ2=23.043, p<.0001.)

However, when alveolar and non-contrastive apicals are compared, no significant

difference appears (df:3, Χ2=3.130, p=.3719.)
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Table 3.39a:  Observed frequencies for distribution of apical  nasals and stops.
Variable:  shape.  Frequencies of more than two are highlighted.

t n #T #N rt rn Totals
parallel lines 0 0 1 0 9 7 17

u 5 6 5 7 0 1 24
Totals 5 6 6 7 9 8 41

Table 3.39b:  Expected frequencies for distribution of apical nasals and stops.
Variable:  shape.

Expected Frequencies:  Shape
Apical Nasals and Stops

2.073 2.488 2.488 2.902 3.732 3.317 17.000

2.927 3.512 3.512 4.098 5.268 4.683 24.000

5.000 6.000 6.000 7.000 9.000 8.000 41.000

t n #T #N rt rn Totals

parallel lines

u

Totals

To summarize, in the case of midline length, even the contrastive apicals do not

differ from each other.  Where these two categories do differ, on the metrics of rear

contact and shape, non-contrastive apicals group with apical alveolars but not with

apical postalveolars.  For coronal width the non-contrastive apicals are distinct from

apical alveolars in having more contact on the sides of the tongue behind the

constriction, which may be an indication of initial strengthening.

3.7.4  Linguography:  Analysis and Interpretation

3.7.4.1  Stops and Nasals

A statistically significant effect of Manner was found for only one of the criteria

examined here.  For midline length, laminal nasals fall into the ‘long’ categories more

often than do stops.  Given the absence of such an effect of Manner in the palatograms,

this phenomenon was pursued.
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The obvious articulatory difference between stops and nasals is in the position of

the velum.  It has been repeatedly observed in x-ray studies that as the velum lowers,

the position of the tongue body also lowers.  An exaggerated schematic of this

coordinated movement is shown in Figure 3.55a.  To illustrate the potential effect of

velum lowering on tongue stance in nasal articulations, let us assume that a marker ps is

placed on the tongue body.  When the velum is lowered, the pellet moves down and

back, to position pn.  Figure 3.55b shows the area of tongue-palate contact during the

nasal in greater detail.  Let us assume that the midpoint of midsagittal contact for a

given stop is indicated by marker pellets on both passive and active articulators.  Pellet

y is attached to the roof of the mouth; pellet xs is attached to the tongue.  The two pellets

are in contact during stop closure.  However, if the tongue body moves down and back

in tandem with velic opening, other points along the tongue may also move rearward,

including pellet xs.  Thus, contact with Place target y on the roof of the mouth will no

longer occur at pellet xs, but will occur at a point further forward on the tongue, shown

here as point xn.  Note that the same area of contact on the palate is involved, even

though the tongue configurations differ slightly.

The coordinated movement between velum and tongue body postulated here is

likely to make more of a difference in [–anterior] articulations, which are closer to the

tongue body, and which have less stretch and mobility than the tip.  Thus, we focus on

the laminal palatoalveolars to test the hypothesis that tongue contact for nasals is further

forward than that for stops.
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Figure 3.55a:  Hypothesized positions of
velum and tongue during a laminal
palatoalveolar stop and nasal.  A stationary
pellet on the tongue body shows downward
and rearward movement in response to
velic lowering.  The rectangular area is
shown enlarged in the top half of Figure
3.55b.

Figure 3.55b:  The upper portion of this
diagram shows a close-up of the
constriction area during the nasal; pellet xs

is displaced rearward.  Note that the same
area of the palate is contacted even though
the tongue configuration differs from that
of the stop.  The lower part of the diagram
illustrates how a linguogram is affected
when the tongue is protruded; contact is
further forward for the nasal.

A chi squared test for categorization of the point of front contact on the tongue

was done on medial laminal palatoalveolar stops and nasals.  Results are given in

Tables 3.40a and b.  The same pattern that emerged in Table 3.25a is visible in Table

3.40a.  Note that the nasals include three tokens for which front contact is described as

‘front’, whereas none of the corresponding stops are described this way.  However,

perhaps because of the paucity of data points, this effect does not reach significance

(df:2, Χ2=4.286, p=.1173.)
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Table 3.40a:  Observed frequencies for
distribution of medial \t4\ and \n44\.
Variable:  Front point of contact.

Table 3.40b:  Expected values for
distribution of medial \t4\ and \n44\.
Variable:  Front point of contact.

0 3 3

5 2 7

5 5 10

10 10 20

ty ny Totals

front

mid

back

Totals

Observed Frequencies:  Front Contact
[-Ant] Laminal Nasals and Stops
Excluded:  Stops in Initial Position

Expected Frequencies:  Front Contact
[-Ant] Laminal Nasals and Stops
Excluded:  Stops in Initial Position

1.500 1.500 3.000

3.500 3.500 7.000

5.000 5.000 10.000

10.000 10.000 20.000

ty ny Totals

front

mid

back

Totals

Unexpectedly, when we re-examine rear point of contact in the laminal

palatoalveolars, we find the opposite:  nasal linguograms show contact further back than

stop linguograms, rather than contact further forward.  However, once again this effect

turns out to be non-significant (df:1, Χ2=1.978, p=.1596.)  Results are shown in Tables

3.41a and b.

Table 3.41a:  Observed frequencies for
distribution of medial \t4\ and \n44\.
Variable:  Rear point of contact.

Table 3.41b:  Expected values for
distribution of medial \t4\ and \n44\.
Variable:  Rear point of contact.

Observed Frequencies:  Rear Contact
[-Ant] Laminal Nasals and Stops
Excluded:  Stops in Initial Position

8 5 13

2 5 7

10 10 20

ty ny Totals

tongue front

tongue center

Totals

Expected Frequencies:  Rear Contact
[-Ant] Laminal Nasals and Stops
Excluded:  Stops in Initial Position

6.500 6.500 13.000

3.500 3.500 7.000

10.000 10.000 20.000

ty ny Totals

tongue front

tongue center

Totals

Thus, it appears that tongue position may differ slightly but not significantly for

stops and nasals in these data.  If a more general trend were established for longer

tongue contact in the nasals, this would imply that the tongue is compressed during

contact in nasals as compared with stops, since their constriction lengths recorded on
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the palate are comparable.  Though outside the scope of this study, this is a topic for

further clarification.

3.7.4.2  Place of Articulation

In accord with palatographic results for length of contact , linguographic data for

midline length and rear point of contact divide themselves along the lines of the feature

Apical.  But unlike the palatographic results, none of the metrics explored here reveal

groupings along the lines of the feature Anterior.  This is not surprising; values for

Anterior are more clearly defined with respect to a relatively stationary passive

articulator than a flexible and mobile one.

For the shape metric, the apical alveolars, apical postalveolars and laminal

palatoalveolars each consistently fall into a single pattern, reflecting the general stance

of the tongue during closure.  However, laminal dentals fall into two shape categories, a

‘triangle’ pattern which implies an apico-laminal denti-alveolar articulatory strategy,

and a ‘u’ pattern corresponding to a laminal (inter)dental strategy.  There is an effect of

position associated with these strategies; more initials are postdental, more medials are

interdental (df:1, Χ2=5.743, p=.0166.)

Table 3.42a:  Observed frequencies for
distribution of initial versus medial laminal
dentals.  Variable:  shape.

Table 3.42b:  Expected values for
distribution of initial versus medial laminal
dentals.  Variable:  shape.

Observed Frequencies:  Shape
Initial versus Medial Laminal Dentals 

2 7 9

9 3 12

11 10 21

i m Totals

u

triangle

Totals

Expected Frequencies:  Shape
Initial versus Medial Laminal Dentals 

4.714 4.286 9.000

6.286 5.714 12.000

11.000 10.000 21.000

i m Totals

u

triangle

Totals
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If we attribute these positional differences to initial strengthening, and if we

associate initial strengthening with careful speech, these findings do not agree with

Butcher’s findings that laminal interdental articulations are careful variants, while

apico-laminal dentialveolars are rapid variants.  This is another area for future research.

3.7.4.3  Contrastive versus Non-Contrastive Apicals

On two of the four criteria examined for linguograms, non-contrastive apicals

are distinguishable from apical postalveolars, but not from apical alveolars.  The non-

contrastive apicals do differentiate themselves from apical alveolars on the criterion of

coronal width, which may indicate initial strengthening.  As in the palatography results,

all three apical categories are statistically indistinguishable on the criterion of midline

length.  However, both palatographic and linguographic results point to the same (non-

significant) tendency for midline length: a tendency of apical alveolars and non-

contrastive apicals to be more similar to each other than either is to postalveolars.

(Refer to Figures 3.48 and 3.49, and to Table 3.36a.) The apical postalveolars show

tendencies toward longer midline contact than the other two groups, because the

underside of the tongue is often the active articulator.

3.7.5  Summary of Linguographic Results

Chi squared statistical tests on categorized linguographic data were used to

examine evidence for relative weighting of polarization and gestural economy in the

domain of consonant Place.  Results were in close accord with those for palatography,

adducing evidence for the re-use of less displaced (articulatorily easy) gestures; i.e. a

heavier relative weighting of gestural economy.  Nasals did show some (non-

significant) tendency toward longer lingual contact in the sagittal midline than stops,

which seems to controvert the idea of re-use of gestures.  However, if there is a velic
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lowering constraint on the tongue body as explicated above, an exact Place target on the

tongue may have to be compromised in favor of an exact Place target on the stationary

passive articulator.  This idea is in line with the fact that none of the criteria examined

here separated linguograms along the lines of the feature Anterior.

3.8  Midsagittal sections

The midsagittal sections that follow summarize production strategies for the

coronal places of articulation in Western Arrernte.  Chi squared tests were done to

investigate the possible effect of speaker on linguographic descriptive variables; no

such effects were found for the five speakers investigated here (midline length df:8,

Χ2=15.872, p=.0617; rear point of contact df:12, Χ2=6.997, p=.8578; coronal width

df:12, Χ2=7.952, p=.7888; shape df:12, Χ2=10.965, p=.5794.)  Similarly, ANOVA on

relative (percent) values for the palatographic measures showed no significant effect of

speaker (frontmost contact F[4,62]=1.435, p=.2330; length of contact F[4,62]=.597,

p=.6659; back cavity index F[4,62]=1.065 p=.3813.)  Thus, since speakers’ articulatory

strategies were similar, exemplars for a single speaker follow.

A word on the arrangement of the following figures is in order.  The midsagittal

diagrams in Figures 3.56–3.61 are reconstructed from the palatogram and linguogram(s)

shown below each diagram.  In each midsagittal section, the portion of the roof of the

mouth outlined in black is drawn from the alginate tracing (refer to Figure 3.9.)

Palatograms have been corrected to lifesize on both horizontal and vertical axes, and

contrast has been increased to show contact prints more clearly in black and white.  On

each palatogram, the speaker’s topographic contour map has been superimposed (refer

to Figure 3.11.)  Recall that the concentric traces on the contour map were drawn at 5

mm intervals.  These traces correspond to the horizontal lines drawn at 5 mm intervals
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on the midsagittal section.  Heavy black perpendicular lines on the palatogram  indicate

the axes along which the alginate impression was cut.  Palatographic photos are not

retouched other than overall contrast enhancement, and still include calibration

guidelines used in the palatography study.  These are extraneous in the current

diagrams.

Each palatogram has been rotated so that the lips point left, as in the midsagittal

section.  In addition, each palatogram is vertically aligned with the alginate tracing, by

using the topographic contour map and the horizontal lines drawn on the midsagittal

diagram.  A graphics program with horizontal and vertical rulers, grid lines and cross

hairs was used to match points on the palatogram and midsagittal section.

Linguograms have not been corrected for size, since as discussed earlier, the

tongue itself can change size, shape and orientation in these photographs.  Contrast has

not been enhanced on linguograms.

As mentioned above, in each midsagittal section, the portion of the roof of the

mouth outlined in black has been drawn from the alginate tracing, and thus is known

with certainty.  Location and length of contact on the palate have been drawn to match

the contact print on the palatogram, as explained in the next paragraph, and are thus also

fairly accurate.  To some extent the position of the tongue body behind the palate can

also be gleaned from the relationship of the contact print to the contour map.  However,

apart from the midsagittal contact area itself, traces in gray are inferred rather than

known with certainty.

In order to accurately reproduce the midsagittal contact area, vertical guidelines

were drawn upward from the front and rear points of contact on the palatogram, to the

aligned points on the alginate tracing.  In each figure, short vertical lines above the

alginate tracing show where guidelines were positioned.  After the contact area was in
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place, linguograms and palatograms together were used to infer the position of the rest

of the tongue during closure.

Figure 3.56:  Palatogram, linguograms and reconstructed midsagittal section for a
phonologically [+apical] [+anterior] nasal.
Articulation:  apical alveolar.
Token: \'man´\ money (n.)
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Figure 3.56 shows a reconstructed midsagittal section for a phonologically

[+apical] [+anterior] nasal.  Notice that tongue contact involves the upper portion of the

tip, while palate contact occurs between the 5 and 10 mm lines.

Figure 3.57, showing a [+apical] stop which is non-contrastive for Anterior, is

similar to the articulation shown in Figure 3.56.  Contact begins slightly further back on

the roof of the mouth, but still lies between the 5 and 10 mm lines.  The pattern of

contact on the tongue is also similar, involving the tip and a narrow region around the

sides.  Both the linguograms and the palatogram show heavier contact at the sides than

in the preceding figure; the tongue body is raised slightly as compared with its position

in Figure 3.56.

Figure 3.58 shows a [+apical] [-anterior] nasal.  Tongue contact involves the

vertex and underside of the apex, and extends from about 7.5 mm to slightly above the

10 mm line; just at the alveolar ridge.  (Recall from Chapter Two that [+anterior]

segments are considered to be articulated in front of the alveolar ridge, while [–anterior]

segments are considered to be articulated at or behind the alveolar ridge.)  The tongue

body is lower than in either of the articulations discussed above, as can be seen from the

comparative lack of contact at the sides of the tongue in the linguogram, and in the

canine and pre-molar area in the palatogram.

Figures 3.59 and 3.60 show phonologically [-apical] [+anterior] stops.  The

articulation in Figure 3.59 is apicolaminal dentialveolar; midsagittal contact on the

palate is between 0 and approximately 8 mm.  The interdental stop in Figure 3.60 is also

dentialveolar in its midsagittal contact area on the palate, which extends between 0 and

approximately 7 mm.  In both of these anterior laminals the tongue body remains fairly

flat--contact at the sides of the palate generally remains below the 10 mm line.
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Figure 3.57:  Palatogram, linguograms and reconstructed midsagittal section for a stop
which is phonologically [+apical]  and non-contrastive for Anterior.
Articulation:  apical alveolar.
Token: \'T´p´\ back (n.)
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Figure 3.58:  Palatogram, linguograms and reconstructed midsagittal section for a
phonologically [+apical] [-anterior] nasal.
Articulation:  sublaminal alveolar or postalveolar.
Token: \'m´=´\ veg. food (n.)



146

Figure 3.59:  Palatogram, linguogram and reconstructed midsagittal section for a
phonologically [-apical] [+anterior] stop.
Articulation:  apicolaminal dentialveolar.
Token: \'t1´m´\ grind (vt)
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Figure 3.60:  Palatogram and reconstructed midsagittal section for a phonologically
[-apical] [+anterior] stop.  The interdental linguogram is not available.
Articulation:  laminal interdental.
Token: \'p´t1´\ pouch (n.)

Figure 3.61 shows a phonologically [-apical] [-anterior] stop.  Notice that the

midsagittal contact area on the palate is similar to that in the [+apical] [-anterior] stop

shown in Figure 3.58, but the area of the tongue making contact, and the general shape

of the tongue during closure, are quite different, as evinced by the wide areas of contact

in the coronal plane.  On the palatogram, contact at the sides extends nearly to the 15

mm line.  On the linguogram, the broad bands of contact at the sides of the tongue also

indicate a raised tongue body.
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Figure 3.61:  Palatogram, linguogram and reconstructed midsagittal section for a
phonologically [-apical] [-anterior] stop.
Articulation:  laminal postalveolar.
Token: \'pet4´m´\ is coming(vi)
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Chapter Four:  Perception of W. Arrernte Coronals
Instrumental studies in Chapter Three showed that the phonologically non-

contrastive apical is phonetically alveolar, and that consequently segments of this type

are used in a larger number of contexts than are apical postalveolars.  Thus, we found

evidence for a high relative weighting of gestural economy in the domain of consonant

Place of Articulation.  Both principles of gestural economy were corroborated:  gestures

were re-used, and a “simpler” gesture was chosen for re-use over a more displaced one.

Retracing these principles to their fundamental ecological forces, the first reflects the

drive toward pattern congruity, while the second indicates the drive toward ease of

articulation.

In the present chapter we turn to the question of why the apical contrast has the

distributional properties it does, with the goal of finding evidence for licensing by cue in

native speakers’ perception of consonants.  Goals and hypotheses to be tested will first

be laid out, followed by a description of methods that were used to test native speakers’

perceptions.  The third section presents results and analysis.

4.1  Goals and Hypotheses

As mentioned in Chapter One, Ohala (1980, 1990) has presented evidence that

nasals are auditorily less robust than stops because they do not have as many acoustic

cues.  For non-native speakers of W. Arrernte, coronal place distinctions are difficult to

hear, particularly in the nasals and laterals which lack burst information.  One goal of

the perception study is to determine whether these difficulties are artifacts of second

language acquisition, or are due to inherent weaknesses in cues.  Though we have

restricted our attention so far to stops and nasals, we add laterals to our investigation

here, and assume that they share the articulatory place strategies discussed above in
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Chapter Three.  Thus, a first objective is to determine the reliability with which native

speakers can differentiate among places of articulation in the stops, the nasals and the

laterals, without benefit of context.  If the difficulty encountered by non-native speakers

is an artifact of late acquisition, we expect native speakers to correctly identify place

contrasts in the nasals and laterals as easily as they do in the stops.  On the other hand,

if nasals and laterals are inherently less robust in their complement of acoustic cues, we

expect native speakers to differentiate more easily among places in the stops than

among places in the nasals or laterals.

Breen (1990) and others observe that the apical contrast bears a lower functional

load than other contrasts in W. Arrernte.  Given this observation, we postulate that

native speakers will show measurably poorer correct identification of apical segments

than other segments, although we leave aside the question of whether functional load is

a cause or an effect of this putative weaker identifiability in apicals.  Our second aim is

to quantitatively compare perception of apical and non-apical segments.

The third objective of the perception study focuses on any differences in native

speakers’ ability to identify apical postalveolars under two conditions:  the case in

which the preceding vowel is present, and the case in which it is absent.  This goal goes

to the heart of the question of licensing by cue:  here we try to adduce evidence that the

pattern of phoneme distribution observed depends on the strength of auditory cues.  As

mentioned in Chapter One, investigators have long proposed that a preceding vowel’s

formant transitions provide an important acoustic cue signaling postalveolar place.

Steriade makes the stronger claim that the reason the two apicals do not contrast in

initial position in many Australian and Indian languages is that there are no preceding

vowel transitions to cue the difference between them.  “Positional neutralization affects

contrasts that are, to begin with, harder to perceive or execute, in positions that further
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add to an initial difficulty.”  (Steriade, to appear.)  Butcher’s electropalatographic

articulatory studies of Australian languages (Butcher, to appear) show results in concert

with the idea of asymmetrical vowel formant transition cues:  apical postalveolar stops

often shift forward in place of articulation between articulatory closure and release.  At

release, such stops are more anterior than they are at closure, and have formant

transitions more like alveolars.  In light of such observations, we hypothesize that

listeners will have greater difficulty in correctly identifying the place of articulation of

apical postalveolars when preceding vowel information is removed.

To summarize, our three objectives place emphasis on differences in auditory

robustness among 1) Manners of Articulation, 2) Places of Articulation, and 3) different

environmental conditions, respectively.  For each of the goals explicated above, we will

take “auditory robustness” to mean that speakers are able to demonstrate a high

proportion of success in identifying contrastive segments.  In measuring relative

auditory robustness, we posit that the most robust segments will be identified 100% of

the time, even out of context.

4.2  Method

4.2.1  Constructing Tokens for Perception Tests

Perception tests were of two types.  In the first, listeners heard \'aC´\ nonsense

disyllables with the task of identifying the consonant.  In the second, listeners heard

\C´\ nonsense monosyllables, once again focusing on identifying the consonant.

Stimuli were constructed as follows.  One male speaker and one female speaker from

the palatography study recorded several repetitions of each of the words and associated

\'aC´\ word fragments in Table 4.1.  These comprise the stops, nasals and laterals at

each place of articulation, including labials and velars.  In each case, the speaker
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repeated the whole word, followed by the \'aC´\ fragment several times, so that he or

she was satisfied that the fragment sounded as similar to the word as possible.  The

disyllabic stimuli were recorded in this way rather than being excised from recordings

of whole words, so that formant offglides from initial consonants would not potentially

affect choice of a word’s identity in the perception tests.

Table 4.1:  Utterances recorded for construction of perception tests.

Bilabial Laminal
Dental

Apical
Alveolar

Apical
Postalveolar

Laminal
Palatoalveolar

Dorsal
Velar

Stops
'aC´

'map´
'ap´

'at1´
'at1´

'l4at´
'at´

'kwaÊ´
'aÊ´

'kwat4´
'at4´

'mak´
'ak´

gloss many (n) I (pr, tr.) today (n) egg (n) water (n) elbow (n)

Nasals
'aC´

'mam´
'am´

'lan1´
'an1´

'man´
'an´

'a=´
'a=´

'mpan4´
'an4´

'paN´
'aN´

gloss sore (n) there-mid
(n)

money (n) ground (n) marriage (n) blind (n)

Laterals
'aC´

'al1´
'al1´

'pal´
'al´

'wañ´

'añ´

'wal4´
'al4´

gloss nose (n) wrong (n) house (n) leafy
branches (n)

For each speaker, two utterances from each cell in Table 4.2 were sampled at

22 kHz and 8 bits, using Signalyze 3.0.  To produce the CV stimuli, the initial vowel

was removed from VCV tokens.
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Table 4.2:  VCV ('aC´) stimuli used for perception tests.

Bilabial Laminal
Dental

Apical
Alveolar

Apical
Postalveolar

Laminal
Palatoalveolar

Dorsal
Velar

Stops 'ap´ 'at1´ 'at´ 'aÊ´ 'at4´ 'ak´

Nasals 'am´ 'an1´ 'an´ 'a=´ 'an4´ 'aN´

Laterals 'al1´ 'al´ 'a ´ 'al4´

Table 4.3:  C´ syllables excised from VCV stimuli for use in perception tests.

Bilabial Laminal
Dental

Apical
Alveolar

Apical
Postalveolar

Laminal
Palatoalveolar

Dorsal
Velar

Stops p´ t1´ t´ Ê´ t4´ k´

Nasals m´ n1´ n´ =´ n4´ N´

Laterals l1´ l´ ´ l4´

4.2.2  Identification Task

In each test, the listener’s identification task was a forced choice picture

selection task.  For example, in testing stops, six pictures were arrayed in front of the

listener, each representing one of the words in the first row of Table 4.1.  Two of the six

possible choices for stops are shown in Figure 4.1.  If the listener heard the consonant

\Ê\ in the word for egg, he pointed to the picture of the egg.  If however, he heard the

consonant /k\, he pointed to the word containing the velar, the word for elbow.

Listeners were directed to choose the word fragment they heard only from among the

available pictures.  Moreover, they were instructed that they must make a choice for

each stimulus.  Listeners were allowed to request repetitions of a token if required, but

most choices were made quickly after a single hearing.
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Listener hears [aÊ´],
chooses picture of \kwaÊ´\ {egg}

Listener hears [ak´],
chooses picture of \mak´\ {elbow}

Figure 4.1:  Samples of pictures used for stop identification tasks.

4.2.3  Presenting Tests

In both VCV and CV tests, manners of articulation were administered

separately; i.e. listeners knew beforehand that the sound in question was one of the six

stops, or one of the six nasals, or one of the four laterals.  Moreover, for each test the

speaker was held constant.  Thus, in each case the listener’s task was restricted to

identification of the place of articulation of the stimulus.  All VCV tests were

administered before all CV tests, but the order of presentation of stops, nasals and

laterals was varied, to reduce possible training effects.  Within a test, stimuli were

randomized and presented in the same order to each listener.  Each token was presented

for identification six times.

Each listener completed twelve tests, characteristics of which are summarized in

Table 4.4.  The listener controlled how many tests he or she completed during any

single session.
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Table 4.4:  Characteristics of the twelve tests presented to listeners.

Condition Speaker Manner Number of stimuli

VCV Female Stops
2 tokens x 6 reps

x 6 POA=72

VCV Female Nasals
2 tokens x 6 reps

x 6 POA=72

VCV Female Laterals
2 tokens x 6 reps

x 4 POA=48
VCV Male Stops 72
VCV Male Nasals 72
VCV Male Laterals 48
CV Female Stops 72
CV Female Nasals 72
CV Female Laterals 48
CV Male Stops 72
CV Male Nasals 72
CV Male Laterals 48

Tests were presented via HyperCard stacks on a Macintosh PowerBook

computer in a relatively quiet room in a house.  Each listener performed tests by him or

herself, hearing stimuli over high quality headphones.  The experimenter did not hear

the stimuli, but recorded responses in the HyperCard stack as listeners pointed to

pictures.

4.2.4  Choosing Listeners

Before carrying out the identification tests described above, prospective

participants took two training/screening tests, in order to rule out subnormal hearing or

non-comprehension of the task involved.  In the first screening test, participants heard

randomized repetitions of six common, multisyllabic words which differ widely in

phonetic shape.  Thus, actual comprehension of stimuli was unlikely to be in question.

None of the words in Table 4.1 were used in these screening tests.  Six pictures
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representing the words were placed in front of the listener, who was instructed to point

to the word he heard after each stimulus.  In the second screening test, listeners heard

stimuli in which the initial consonant of each multisyllabic word had been removed, to

allow participants to get used to identifying words from word fragments.

Three male and six female native speakers participated in the study.  Three of

these were also participants in the palatography study.  The speakers who recorded the

tokens were excluded from perception tests.

4.3  Results and Discussion

4.3.1  VCV Results

Despite good performance in the screening tests, one listener had to be excluded

from result summaries due to consistently poorer performance in correct responses, as

well as zero percent correct responses in two nasal categories.  These results led to

doubt about her ability to perform the task.  Results discussed below summarize eight

listeners’ responses.

Tables 4.5a, b and c summarize overall results for the VCV condition, for stops,

nasals and laterals respectively.  Actual place of articulation of stimuli is shown across

the top row of each table; percent distribution of responses is shown in each column

underneath.  (In these tables, percentages have been rounded to the nearest integer.  As

such, column totals may equal 99, 100 or 101.)  Boxes enclosed in double lines show

correct responses.  Shaded boxes show substantial misperception of tokens as another

category.
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Table 4.5a:  VCV responses for stops, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

p t1 t Ê t4 k
p-R 85 1 1 0 0 0
t1-R 12 96 10 1 1 3
t-R 3 1 70 24 0 1
Ê-R 0 1 19 74 0 2
t4-R 0 1 0 0 99 1
k-R 0 1 0 0 0 94

Table 4.5b:  VCV responses for nasals, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

m n1 n = n4 N
m-R 94 0 0 0 1 0
n11-R 1 75 8 0 5 3
n-R 4 9 62 3 5 1
=¢-R 1 13 28 96 0 0
n42-R 1 3 1 1 88 2
N-R 0 0 1 0 2 94

Table 4.5c:  VCV responses for laterals, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

l1 l l4

l1-R 91 8 2 3
l-R 6 62 12 2

-R 2 29 84 1

l4¢¢-R 1 1 2 95

Log linear tests of statistical significance were applied to these results.  In a way

similar to the chi squared tests applied to linguographic data, observed values were
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compared with expected values in determining statistical significance.  However,

because these are by definition contrastive segments, we expect native speakers to

perform with a high success rate, rather than to perform according to chance.  Thus,

unlike in the case above, the null hypothesis adopted in these statistical comparisons

was that contrastive segments would be perfectly perceived; i.e. show 100% correct

responses.

All results discussed in this and following sections are statistically significant in

log linear tests using Pearson’s chi squared, at a ‘p’ value of less than .01.

4.3.1.1  Correct Identification of VCV Tokens

Correct responses are reproduced graphically in Figures 4.2a-c.  Place of

articulation from front to back is shown on the x-axis, with apicals, laminals and

peripherals (labials and velars) labeled accordingly.  The y-axis shows percent correct

identification of each segment category, summed over the eight listeners.  (100%

represents 576 responses for stops and nasals.  100% represents 384 responses for

laterals.)

Once again, as in the articulatory study, we first address differences in Manner,

and then differences in Place.  Taking all places of articulation together, stops did not

show a higher overall rate of correct identification than nasals or laterals.  Therefore, in

terms of our first objective, we find nasals and laterals to be as auditorily robust as

stops.  We cannot establish that for native speakers nasals and laterals have inherently

weaker cues.  A cursory inspection of spectra is included at the end of this chapter,

where we look in further detail at possible cues provided by nasal and lateral murmur

spectra.
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Figure 4.2a:  Percent correct identification of stops––VCV condition
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Figure 4.2c:  Percent correct identification of laterals––VCV condition
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Looking across manner of articulation, several results emerge.  First, peripherals

are identified correctly a high proportion of the time.  For all peripherals except \p\

correct identification was over 90%.  (The 85% success rate for \p\ is attributable to one

listener, who had a very uncharacteristic correct identification rate of only 21% for \p\.

This listener’s results were not excluded, since our focus here is on coronals rather than

peripherals.)  Results for peripherals thus provide a control situation demonstrating that

most listeners did not have trouble with the test procedures per se.  Second, turning to

coronals, laminal palatoalveolars are consistently robust in correct identification, across

manners, although the laminal palatoalveolar nasals are significantly less robust than the

stops (stops 99%, nasals 88%, laterals 95%.)  Third, apical alveolars fare worst in

correct identification, for stops (70%), nasals (62%) and laterals (62%) alike.  Fourth,

taking the laminal dentals and apical postalveolars under consideration, we observe a

place–manner interaction for these segments.  For laminal dentals, the stops and laterals

show high proportions of correct identification; 96% and 91% respectively.  The

laminal dental nasals are significantly less robust (75% correct identification.)  For the

apical postalveolars the reverse is true:  nasals are very robust (96% correct

identification), significantly more so than laterals (84%), which are again significantly

more robust than stops (74%).  However, note that the \'aC´\ disyllables involving \t1, =,

l1\ are the only three stimuli that are identical to the actual words; they are not nonsense

forms.  This difference may well enhance the salience of these disyllables, or reduce the

difficulty of the identification task by eliminating the need to recognize a word

fragment.

Thus, in terms of our second goal for the perception study, we cannot

definitively conclude that both apical places are less auditorily robust than others.  We
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can conclude that apical alveolar segments are significantly less auditorily robust than

segments at other places of articulation.

4.3.1.2  Incorrect Identification of VCV Tokens

Apical segments show substantial misperception in other categories.  Figure 4.3

summarizes correct responses as well as the distribution of misperceptions in the

apicals.  The x-axis shows each apical and the division of responses into laminal dental,

apical alveolar, apical postalveolar, and laminal palatoalveolar categories respectively.

(Note that although the articulation illustrated in Figure 3.61 of Chapter Three is

described as laminal postalveolar, we will continue to use the traditional term

‘palatoalveolar’ in this discussion, to avoid confusion with the apical postalveolar.)  On

the y-axis is the percent distribution of identifications.  Looking at misperceptions in \t\,

\n\, and \l\, the apical postalveolars predominate, followed by laminal dentals; this

effect holds across manners of articulation, with the alveolar nasals and laterals being

nearly identical in their distribution of responses.  Misperceptions of \t\, \n\, and \l\ as

laminal palatoalveolars are nearly negligible.

In the apical postalveolars, there are far fewer misperceptions in the nasals than

in the laterals or stops.  Again, a contributing factor may be the status of \'a=´\ as a

meaningful word.  However, for each manner of articulation in the apical postalveolars,

misperception as the apical alveolar predominates, followed by nearly negligible

responses in each of the laminal categories.
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Figure 4.3:  Distribution of responses to apical stimuli among correct and incorrect
categories for VCV tests.

To summarize the VCV results, native speakers distinguish among nasals and

laterals as reliably as they distinguish among stops.  Thus, in considering Manner of

Articulation, we do not find a basis on which to conclude that overall, sonorants are

inherently weaker than stops in their complement of auditory cues.  We will return to

this topic in our examination of spectra.  Secondly, while listeners identify peripherals

and laminal palatoalveolars very reliably, apical alveolars are significantly less robust in

correct identification.  Thus, as concerns Place, we can establish that for native

speakers, apical alveolars are inherently more difficult to identify than other places of

articulation.  A potential confound in the apical postalveolars, due to the presence of a

real word among the VCV stimuli, prevents this conclusion for the apical postalveolars.
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4.3.1.3  Acoustic Analysis

Acoustic analysis of the tokens used in this experiment provides instructive

clues as to the cues listeners may have been using to correctly identify tokens.  Analysis

of Variance showed that Place of Articulation has a significant main effect on formant

transition values, formants during nasal/lateral murmur, duration of voiceless closure,

voice onset time and “affrication quotient.”  The latter is a measure of the duration ratio

between high frequency frication during voice onset, and total voice onset time.  In

addition, ANOVA showed that a segment’s value for the feature Apical has a

significant main effect on sonorant murmur duration, and duration of the preceding

vowel.  Unless otherwise indicated, all results discussed below are significant in

Fisher’s PLSD post hoc comparisons, at a p=.05 level or less.  Recall, however, that

each category mean reflects only four tokens.

In the following discussion, the terms ‘V1’ and ‘V2’ will be used for

convenience, to refer respectively to the vowel preceding the consonant in question, and

the vowel following the consonant in question.  Taking durations in apicals and

laminals first, across Manners of Articulation V1 is significantly longer before apicals

than it is before laminals.  In the sonorants, murmurs are significantly shorter in

duration for apicals than they are for laminals.

Let us turn to the laminal palatoalveolars, which proved to be the most robust

coronal segments.  We find that across Manners of Articulation, laminal palatoalveolars

have significantly lower F1, and significantly higher F2 and F3 formant transitions on

both sides of the consonant than do other coronals.  Palatoalveolar sonorants have a

higher F2 during the murmur than do other places of articulation.  Among the stops,

laminal palatoalveolars have a significantly longer VOT than other coronals.  Moreover,
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affrication occurs over the entire duration of voice onset (affrication quotient =1.)

These results are summarized in Figures 4.4–4.6.

Laminal dental stops, laminal dental laterals and apical postalveolar nasals were

the other robust coronals.  The status of \'at1´\, \'a=´\, and \'al1´\ as meaningful words is

likely to have had a salience-enhancing effect on these VCV tokens.  However, leaving

their status as words aside, let us address the acoustic properties that were statistically

differentiable among these tokens.  The \t11\ has the longest voiceless closure duration of

any of the coronals.  This is presumably an important cue for intervocalic \t11\, since as

will be shown in the following section, the excised token loses a significant amount of

identifiability (13%) in the CV condition, when the closure is absent.  On the side of the

consonant facing V2, \t11\ has the lowest ratio of high energy frication to VOT.  While \t4\

is fricated for the entire length of its VOT, \t1\ is only fricated for slightly more than half

its VOT (affrication quotient=0.6.)  Moreover, three of four tokens of \t1\ had double

bursts, which was not true of any of the other coronal stops.  On the other hand, \n1\ and

\l1\ could not be completely separated statistically from other place categories in any

ANOVA.  This accounts for the less robust perception of some nasals, but leaves

acoustically unexplained the high performance of listeners on laminal dental laterals.

We will revisit the issue of possible contributing cues for these sonorants in the section

on spectra below.

The \=\ was characterized by significantly lower F3 transitions than for other

nasals, on both sides of the segment.  Interestingly for \Ê\ and \ \, though F3 offsets from

V1 were indeed significantly lower in frequency than those of other coronals,

transitions to V2 were not significantly differentiable from those of alveolars or dentals.

An interesting segment–speaker interaction provides clues to important cues for

laminal dental and apical postalveolar stops.  Most listeners who misperceived \t\ as \t11\
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did so while hearing the speaker whose tokens of \t\ include a voiceless closure.  On the

other hand, listeners who mistook \t\ for \Ê\ were listening to the speaker whose tokens

of \t\ were completely voiced through the closure.  The directions of these

misperceptions add to the implication that a salient voiceless closure is expected for \t11\

but not for \Ê\.

Acoustic characteristics that are statistically differentiable within each manner

of articulation are summarized in Figures 4.4–4.6, along with sample spectrograms of

the coronal stops, nasals and laterals.  (Overloading has caused lower formants to

appear as white bands rather than black bands in these spectrograms.)
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Laminal dental:  /'at1´/
1. longest voiceless closure
2. lowest affrication quotient
3. double bursts

Laminal palatoalveolar:  /'at4´/
• lowest F1 offset and onset
• highest F2 and F3 offsets and onsets
• longest VOT
• highest affrication quotient

Both laminals:  Preceding vowel shorter than in apicals

Apical alveolar:  /'at´/ Apical postalveolar:  /'aÊ´/
• lowest F3 offset

Both apicals:  Preceding vowel longer than in laminals

Figure 4.4:  Spectrograms of four stop tokens for one speaker.
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Laminal dental: /'an1´/ Laminal palatoalveolar: /'an4´/
• lowest F1 offset and onset
• highest F2 and F3 offsets and onsets
• highest F2 during murmur

Both laminals:
• Preceding vowel shorter than in apicals
• Murmur duration longer than in apicals

Apical alveolar: /'an´/ Apical postalveolar: /'a=´/
• lowest F3 offset and onset

Both apicals:
• Preceding vowel longer than in laminals
• Murmur duration shorter than in laminals

Figure 4.5:  Spectrograms of four nasal tokens for one speaker.
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Laminal dental: /'al1´/ Laminal palatoalveolar: /'al4´/
• lowest F1 offset and onset
• highest F2 and F3 offsets and onsets
• highest F2 during murmur

Both laminals:
• Preceding vowel shorter than in apicals
• Murmur duration longer than in apicals

Apical alveolar: /'al´/ Apical postalveolar: /'a ´/
• lowest F3 offset

Both apicals:
• Preceding vowel longer than in laminals
• Murmur duration shorter than in laminals

Figure 4.6:  Spectrograms of four lateral tokens for one speaker.
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4.3.2  CV Results

Tables 4.6a, b and c summarize overall results for the CV condition, for stops,

nasals and laterals respectively.

Table 4.6a:  CV responses for stops, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

p t1 t Ê t4 k
p-R 83 3 1 5 1 1
t1-R 11 83 27 47 3 2
t-R 1 4 35 18 1 1
Ê-R 3 4 28 19 1 3
t4-R 1 1 1 2 94 2
k-R 1 6 8 9 1 92

Table 4.6b:  CV responses for nasals, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

m n1 n = n4 N
m-R 93 1 1 2 2 1
n11-R 3 70 19 41 3 2
n-R 1 8 45 21 2 2
=¢-R 1 14 30 28 1 3
n42-R 1 3 2 5 87 3
N-R 2 4 5 4 6 90



170

Table 4.6c:  CV responses for laterals, summed over eight listeners.
Tokens for both speakers are included.  Columns show the stimulus and rows the
percentage responses.

l1 l l4

l1-R 55 29 27 3
l-R 17 32 24 2

-R 20 37 45 3

l4¢¢-R 7 2 4 92

4.3.2.1  Correct Identification of CV Tokens

Figure 4.7 shows CV results for each manner, preceded by the respective results

in the VCV condition, for ease of comparison.
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Figure 4.7:  Rates of correct identification of stops, nasals and laterals.  VCV responses
are shown at left; CV responses at right.
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Looking first at rates of successful identification in the peripherals and laminal

palatoalveolars, it is striking to observe that in every VCV–CV comparison, correct

identification rates remain statistically unchanged.  The fact that \p\, \m\, \k\, \N\, \t4\,

\n4\, and \l4\ do not differ significantly in their percent correct responses under these two

conditions means that each segment is as robust without the benefit of characteristics

associated with V1, as it is when those characteristics are present.  Such a result implies

that the critical acoustic cues used by listeners to identify peripherals and laminal

palatoalveolars are associated with the consonant itself, and/or with its transitions to V2.

Laminal dentals, \l1\, and to a lesser extent \t1\, lose a significant amount of

identifiability in the CV situation as compared with the VCV situation.  Losses in

correct identification are 36% for \l1\, and 13% for \t1\.  Laminal dental nasals, which are

identified less well in the VCV condition to begin with, do not change significantly in

the CV condition.  These results indicate that intervocalic laminal dentals contain at

least some important cues that depend on the presence of V1, such as long voiceless

closure in \t1\, and the duration of V1 itself.

The most dramatic differences are in the apicals, however.  In the CV condition,

the perception of all apicals drops below a 50% correct identification rate.  These results

have high significance levels (p=.002 or less) in every apical VCV–CV comparison.

From this we conclude that, unlike peripherals and palatoalveolars, the critical cues for

apical segments reside with the preceding vowel; when V1 is excised, the apicals can no

longer be identified correctly.
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4.3.2.2  Incorrect Identification of CV Tokens

Let us look at misidentifications of CV tokens in closer detail.  Figure 4.8 shows

the distribution of responses to apicals in the CV condition, with Figure 4.3 reproduced

immediately above it for ease of comparison.
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Perceived as dental Perceived as alveolar
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Figure 4.3:  Distribution of responses to apical stimuli among correct and incorrect
categories for VCV tests.
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Figure 4.8:  Distribution of responses to apical stimuli among correct and incorrect
categories for CV tests.  All distributions except those of /n/ and /Ê/ are random
distributions among dentals, alveolars and postalveolars.

Here we see a clear disturbance in listeners’ perceptions.  As compared with the VCV

condition, there is much more intrusion of the incorrect percept of laminal dental; not

only for alveolars, where the effect was significant but small before, but for

postalveolars as well.  In fact, identification becomes statistically random among the

three categories laminal dental, apical alveolar and apical postalveolar, in four of the six

CV cases.  Only \n\ and \Ê\ do not show random distribution among these three

categories.  However, perceptions of \Ê\ are just as corrupted:  here, laminal dentals

account for more responses than the correct category itself.  Once again, these results

for \Ê\ are in line with Butcher’s observation that postalveolar articulations may be

further forward at release than at closure.

Laminal dentals, too, lose identifiability when the preceding vowel is excised.

Figure 4.9 compares responses in the VCV condition to responses in the CV condition,
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for \t1\, \n1\, and \l1\ respectively.  The first member of each pair shows VCV responses,

while the second shows CV responses.  For \t1\, there is a significant decline in correct

responses when V1 is removed, with misperceptions being about equally distributed

between the apicals.  The same tendency occurs in \n1\, although this does not reach

statistical significance.  For the laterals, there is an additional significant element of

misperception as the laminal palatoalveolar, which may have to do with the loss of

higher formant information associated with laterals in general.
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Figure 4.9:  Correct and incorrect identifications of laminal dentals––VCV and CV
conditions compared.  First member of each pair shows VCV responses; second member
shows CV responses.

Thus, results of CV tests imply that V1 information is used to some extent in

identifying intervocalic laminal dentals.  Much more importantly for our purposes here

though, results of CV tests confirm our hypothesis that postalveolars would demonstrate
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reduced correct identification with removal of preceding vowel information.  Indeed,

this behavior was also unexpectedly observed for apical alveolars.  Listeners require V1

information in order to correctly identify apicals, and for this reason the language

cannot contrast apicals in initial position.

4.3.2.3  Acoustic Analysis

Important acoustic cues that depend upon the presence of V1 and that are thus

lost in the CV condition include duration information.  As mentioned above, across

manners, preceding vowels are significantly longer before apicals than before laminals.

Duration of voiceless closure for stops, and duration of murmur for sonorants, is also

important.  In the stops, voiceless closures are longest for \t11\.  In the sonorants, murmurs

are significantly shorter in duration for apicals than they are for laminals.  Voiceless

closure is lost altogether in the CV condition, explaining the drop in correct percent

identification of \t11\.  As for the sonorants, murmurs remain in the CV situation, but their

duration cues may lose some salience when the listener cannot normalize against the

duration of a preceding vowel.

The most visible difference between VCV and CV cases is the lack of V1

formant transition information in the CV condition.  The apical postalveolar tokens

examined here do reflect the characteristic pattern of formant proximity in F2, F3 and

F4 at V1 offset that is noted by other researchers, and for \Ê\, \=\, and \ \ F3 is

significantly lower than in other members of the coronals.  (F4 was not included in

acoustic measurements for this study.)  A common onset locus of F2, F3 and F4 is

absent on the side of the consonant facing V2, except in tokens of \=\.  On the V2 side,

laminal dentals, apical alveolars and apical postalveolars are all much more similar in
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their formant transitions than they are on the V1 side.  Figure 4.10 shows spectrograms

of four stop tokens for one speaker with formant tracings added for clarity.

Laminal dental: /'at1´/ Laminal palatoalveolar: /'at4´/

Apical alveolar: /'at´/ Apical postalveolar: /'aÊ´/

Figure 4.10:  Spectrograms of four stop tokens for one speaker with formant tracings
added.

4.3.2.4  Spectra

The acoustic characteristics we have examined thus far have not conclusively

separated \n1\ and \n\ from other nasals (see Figure 4.5), nor \l1\ and \l\ from other

laterals (see Figure 4.6.)  This fact, coupled with the lack of significant differences in

correct identification rates among the Manner classes, makes appropriate an

examination of spectral characteristics of tokens used in this experiment.  Sonorants

may indeed contain fewer potential cues than stops, but may still be enough different in
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their spectral structures to furnish native speakers with Place information that renders

the sonorants as reliably identifiable as stops.  The observations below are preliminary

and are not corroborated by statistical tests.

Figures 4.11 and 4.12 show stop burst spectra for the male and female speakers’

tokens respectively.  Recall that two tokens represented each segment for each speaker;

the spectrum shown is an average over both tokens.  Lines have been smoothed using a

10-point moving average of values, to highlight major peaks and valleys.  In each case,

the x-axis is presented on a logarithmic scale, to give greater weight to frequencies

important in the hearing range.  The y-axis shows amplitude in dB.  Figure ‘a’ in each

case shows frequencies between 100 and 10000 Hz, while Figure ‘b’ displays a close-up

of frequencies between 1000 and 5000 Hz.

For the male speaker, in the lower frequency region below 1000 Hz we see a

clear separation of spectra into two groups: high energy \p, t, Ê\ and low energy \t1, t4,

k\, as labeled in Figure 4.11a.  This separation is not nearly as clear for the female’s

stop bursts, though a similar trend exists, with \p, Ê\ in a higher energy group and \t4, k\

in a lower energy group.

In the higher frequency half of the graph, and in particular the area between

1000 and 4000 Hz, it is the female’s stop bursts that show greater visible differences

than those of the male.  In Figure 4.12a, prominent high energy peaks stand out for \Ê\

(centered around 2000 Hz), and \t4\ (centered between 3000 and 5000 Hz.)  High energy

regions are less conspicuous for the other places.  For both speakers, the lowest-

frequency peak in the region above 1000 Hz is for \p\, while the highest frequency peak

is for \t4\.  For other places there is less consistency between the speakers.  Frequency

order of lowest-frequency peaks for the male is as follows: 1) \p\, 2) \t\ and \Ê\, 3) \t1\,

4) \k\, 5) \t4\ (refer to Figure 4.11b.)  Frequency order of lowest frequency peaks for
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the female is:  1) \p\, 2) \t1\, 3) \k\, 4) \Ê\ and \t\, 5) \t4\ (refer to Figure 4.12b.)  If we

disregard strict frequency order, we can generalize further.  For both speakers the

laminal dental has a flat, falling spectrum, while \t\, \Ê\, and \k\ show two peaks, the

first in the vicinity of 1500-3000 Hz, and the second in the vicinity of 3000-5000 Hz.

On the basis of the data presented here, however, it seems that spectral bursts do not

provide a very clear way of distinguishing coronal stops.

Let us turn to the nasal murmurs.  Kurowski and Blumstein (1984) and others

demonstrate the importance of nasal pole-zero patterns as place cues.  In our data,

however, the poles preceding zeroes (those occurring in the vicinity of 500 Hz) are less

separated in frequency than the poles following zeroes.  In Figures 4.13 and 4.14, each

spectrum is characterized by a prominent valley, closely followed by a prominent peak.

When examining peaks or valleys alone, a local high or low does not stand out as

clearly as when these zero-pole combinations are considered together as a unitary

feature.  For example, in Figure 4.13, zeroes for \n\ and \n1\ seem to converge, but their

peaks are staggered.  On the other hand, peaks for \n1\ and \=\ overlap, but their zeroes

are staggered.  Looking at the sequence of zero and pole together, a cascade pattern

emerges.  Results are consistent between the speakers: \m\ shows the zero-pole

sequence at the lowest frequency, followed by 2) \n\, 3) \n1\, 4) \=\, 5) \n4\, and 6) \N\

(refer to Figures 4.13b and 4.14b.)  Incidentally, this frequency ordering is also found

for nasal zeroes in Eastern Arrernte (Ladefoged and Maddieson, 1996.)

Laterals also exhibit a staggered pattern of zeroes and poles in close proximity,

and thus are also reasonably separable (visually) from each other.  As shown in Figures

4.15 and 4.16, the frequency order of these sequences for both speakers is 1) \l\,

2) \l1\ and \ \, 3) \l4\.  Again, this frequency ordering is in concert with that found by
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Ladefoged and Maddieson (1996) for the frequency order of F2 in E. Arrernte, as well

as the related Arandic languages Kaititj and Alyawarra.

Figure 4.11a:  Male speaker’s stop burst spectra, 100-10000 Hz.
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Figure 4.11b:  Male speaker’s stop burst spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.
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Figure 4.12a:  Female speaker’s stop burst spectra, 100-10000 Hz.

Figure 4.12b:  Female speaker’s stop burst spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.

1 2 53 4
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Figure 4.13a:  Male speaker’s nasal murmur spectra, 100-10000 Hz.

Figure 4.13b:  Male speaker’s nasal murmur spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.
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Figure 4.14a: Female speaker’s nasal murmur spectra, 100-10000 Hz.

Figure 4.14b:  Female speaker’s nasal murmur spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.
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Figure 4.15a:  Male speaker’s lateral murmur spectra, 100-10000 Hz.

Figure 4.15b:  Male speaker’s lateral murmur spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.
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Figure 4.16a:  Female speaker’s lateral murmur spectra, 100-10000 Hz.

Figure 4.16b:  Female speaker’s lateral murmur spectra, 1000-5000 Hz.  Numbers are
vertically aligned with peaks discussed in the text.



187

To summarize, there is both inter-speaker consistency in the ordering of nasal

and lateral zero-poles, and surprisingly, consistency between nasals and laterals.  Such

consistency does not hold of the stops.  The frequency at which a zero-pole occurs is

characteristic of a certain place.  The uniformity of these place cues may compensate for

relative deficiencies vis-a-vis stops in numbers of cues.

Turning to spectral characteristics of apicals for a moment, results of perception

tests prepare us for the observation that the two apical stop burst spectra are similar in

shape.  Both apicals have peaks at around 1600 Hz and 3500 Hz for the male speaker,

and peaks centered around 2000 Hz, and 3500-4000 Hz, for the female speaker.  (The

male has an additional resonance for \Ê\ at 5500 Hz.)  Interestingly though, due to the

locations of zeroes in the nasals and laterals, it is the apical postalveolars and laminal

dentals that look most similar to each other in the sonorants.  Such similarities help to

explain results of the CV perception tests in which postalveolars lacking their V1 cues

were identified most often as laminal dentals.

Thus, in W. Arrernte, where native speakers are accustomed to discriminating

among a large number of places of articulation, locations of closely conjoined spectral

zeroes and poles in murmurs may provide sufficient acoustic differences to make up for

the lack of cues that are available in stops.  However, we still see a lack of

unambiguously distinguishing characteristics between laminal dentals and apical

postalveolars.  Both sets of observations provide topics for further research.

4.4  Summary of Perception Results

In this chapter we set out with three goals:  1) to determine the relative auditory

robustness of different manners of articulation, 2) to confirm or refute the hypothesis
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that apical segments are less auditorily robust than others, and 3) to confirm or refute

the hypothesis that the phonotactic distribution of apicals in W. Arrernte relates directly

to the presence or absence of auditory cues.  In terms of the first goal, we found that

listeners are equally successful in identifying the place of articulation of stops, nasals

and laterals.  Consistent spectral place characteristics in the form of zero-pole pairs

during murmur steady states may contribute to the auditory robustness of nasals and

laterals.

In terms of our hypothesis that apicals would be less auditorily robust than other

segments based on the observation of their lower functional load, results were

indeterminate for postalveolars, but held true of alveolars.  The possibility of higher

level processing in the identification of VCV tokens that constituted actual words posed

a potential confound for some postalveolars.

The cue licensing hypothesis was strongly borne out in this auditory perception

experiment.  Loss of a preceding vowel drastically inhibits correct identification of both

apicals.  Specifically, without V1 information, listeners choose randomly among apical

alveolar, laminal dental and apical postalveolar places of articulation.

Let us summarize perception test results and acoustic characteristics found for

experimental tokens, in terms that relate to cue licensing.  Laminal palatoalveolars do

not lose salience in the CV condition.  This is because each of the laminal

palatoalveolar segments contains acoustic characteristics that separate it from other

members of its manner class, and importantly, these acoustic characteristics inhere in

both flanking vowels and in the consonant itself.  Statistically differentiable

characteristics include the lowest F1 and highest F2 and F3 formant transitions in both

offsets and onsets.  Laminal palatoalveolar sonorants are long in duration, and have the

highest F2 during murmurs.  Moreover, in /t4/, the longest VOT of the four coronal
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stops, and a release that is affricated for virtually the entire VOT, add to cues on the

side facing V2.  Finally, though statistical significance is not known for the spectra,

both /n4/ and /l4/ have higher zero-pole sequences than other coronals.

Laminal dentals do lose some salience in the CV condition.  Again, we find

potential cues in both flanking vowels, as well as within the segment itself, but not the

profusion of cues provided by the palatoalveolar.  On the side facing V1, like

palatoalveolars, laminal dentals contain a short preceding vowel.  Moreover, the laminal

dental stop has the longest voiceless closure duration of the coronals.  In terms of the

consonant itself, laminal dental sonorants involve a long murmur, similar to

palatoalveolars, but without the high F2 (during murmur) and the high F2 and F3

transitions that characterize the latter.  (Thus, within the laminals, dentals may be

identified on negative evidence.)  On the V2 side, stops have a release that is affricated

for the lowest proportion of the total VOT, and three of four tokens have a double burst.

Thus, even with V1 removed, differentiating cues remain within the release of /t1/, and

within the long, negatively identified /n1/ and /l1/.

Apicals clearly lose their salient cues when V1 is excised.  The random nature of

responses in the CV tests suggests that listeners are guessing in their attempts to identify

apicals in this condition.  At the same time, for alveolars and postalveolars alike, we fail

to find acoustic characteristics either within the consonant or within transitions to V2

that categorically set these segments off from other members of their manner cohort.

Apical segments involve a long preceding vowel, and sonorants are characterized by a

short murmur.  Moreover, postalveolars are positively characterized by their unique

formant offglides from V1, while alveolars, like dental segments with respect to

laminals, are identified by negative evidence––the lack of the postalveolar’s formant

offglides.  However, all transition and V1 duration information is lost when V1 is
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excised.  Further, duration information regarding length of murmur does not separate

the apicals from each other even in the VCV condition, and may well be compromised

in the absence of V1, making confusion with the dental more likely.  Spectra of

alveolars and postalveolars are visually distinct in nasals and laterals, but whether these

differences are statistically significant is not known.  Apart from this spectral

difference, with V1 removed, neither alveolar nor postalveolar tokens show acoustic

characteristics that statistically separate them completely from other coronals.  Alveolar

stops are particularly variable—they can be voiced or voiceless, can have high or low

energy bursts, and across manners alveolars do not have V2 formant onset transitions

distinct from postalveolars, or indeed formant transitions to either flanking vowel that

are distinct from laminal dentals.  In the same vein, postalveolars in the CV condition

have no acoustic characteristics that statistically distinguish them from alveolars or

dentals, and worse, the murmur spectra of dental and postalveolar sonorants are

extremely similar.  Again, the extent to which listeners rely on spectral characteristics

within the murmur is not clear, but the similarity between postalveolars and dentals

helps explain why more postalveolars are identified as dental than other categories

when offset transitions are removed.

Thus, results of this chapter demonstrate that the phonotactic distribution of

coronal segments dovetails well with distribution of their acoustic characteristics.
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Chapter Five:  Conclusion
As a point of departure, this dissertation reviewed four competing forces which

constrain the sound structures of languages:  ease of articulation, auditory

distinctiveness, maximization of numbers of contrasts, and pattern congruity.  Some

examples of interactions among these forces were explored, to show how tensions

among the forces are resolved.  Phonetic models that incorporate one or more of these

forces were presented, including Keating’s Polarization principle (1984), Keating’s

Window Model of Phonetic (Under)Specification (1990), Lindblom and Maddieson’s

Size/Structure Hypothesis (1988), Maddieson’s Theory of Gestural Economy (1996,

1997), Steriade’s Production Hypothesis (1993, 1995), and Steriade’s principle of

Licensing by Cue (1999.)

Extrapolating from Flemming’s (1997) suggestion that it is possible to calculate

an overall cost value for phonetic solutions, namely the sum of numerically weighted

phonetic constraints, we presented the notion of domain-specific weighting, which

supposes that different weight valuations are preferred in different phonetic domains.

Thus, in the following cost equation, each of the weight terms is specific to the phonetic

domain in question.

    we (violation of ease of articulation metric)

+ wd (violation of auditory distinctiveness metric)

+ wn (violation of maximization of numbers of contrasts metric)

+ wc (violation of pattern congruity metric)

= cost
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Gestural Economy, Polarization, and Licensing by Cue implicitly give the four

metrics expressed in the above equation different weights.  It is these three principles

we focused on in this thesis.  While evidence has accrued in previous literature for

gestural economy in the domain of consonant Place of Articulation, the literature does

not present clear evidence of polarization in this domain.  We looked for that evidence,

by empirically investigating the articulation and auditory perception of coronals in W.

Arrernte, a Central Australian language that makes use of an apical contrast

intervocalically but not initially.

Main results of the articulation study provided evidence of gestural economy,

but not evidence of polarization in the domain of consonant Place.  In terms of the four

ecological forces mentioned above, evidence was found for stronger relative weightings

of ease of articulation and pattern congruity over auditory distinctiveness, in this

domain. Specifically, both palatographic and linguographic results showed that speakers

re-use the same apical articulations in both contrastive and non-contrastive

environments, and the same apical articulations in both stops and nasals.  Moreover, the

less displaced (alveolar) segment is used in the larger number of contexts.

It appears that the articulatorily “default” alveolar segments are also perceived

by default.  When compared with other coronals, apical alveolar tokens were relatively

variable in their acoustic characteristics, contained less positive acoustic evidence, and

were significantly less auditorily robust than other coronals.  Here again is evidence that

auditory distinctiveness is sacrificed in favor of ease of articulation in the domain of

Place.

Licensing by cue was empirically demonstrated.  This principle explains the

reason for the particular phonotactic distribution of apicals in W. Arrernte.  In these

apicals, cues used by listeners reside in the preceding vowel.  The major cue to apical
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postalveolar place is a common offset locus of F2, F3 and F4 in the preceding vowel,

while the major cue to apical alveolar place is the lack thereof.  Where these cues are

lost, contrast is lost.

Thus, here again, as in previous literature, we found evidence for gestural

economy but not for polarization in the domain of consonant Place.  This study

constitutes preliminary evidence that the domain of consonant Place gives higher

weighting to ease of articulation and pattern congruity, over auditory distinctiveness.

More work is necessary to determine whether certain phonetic domains show clear

preference for certain ecological forces, and to determine what motivates the division of

labor between desirable principles like polarization and gestural economy.  For

instance, it may be that consonant Place weights the latter highly because of the

presence of oral landmarks, which presumably are especially salient in stop, nasal and

lateral production.  Thus, stops, nasals and laterals are articulatorily defined.  On the

other hand, because vowel systems seem to be largely auditorily defined, it stands to

reason that vowels should involve a higher relative weighting of auditory

distinctiveness.  Domains such as gestures per se versus timing of gestures, or segments

versus material superimposed on those segments, may show different specific

weightings––different preferences for the ecological forces affecting sound systems in

language.

In summary, it appears that an overall model of the role played in phonetic

systems by the various forces considered here must be designed to give different

weights to different factors according to the phonetic domain being evaluated.
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Appendix:  Informed Consent Form

December  26, 1994      Informed Consent Form

A Study of the Sounds and Articulations of W. Arrernte and Murrinh-Patha

Victoria Anderson, C. Phil., a member of the UCLA Phonetics Laboratory, is

doing research on the ways in which speech sounds are produced in Western Arrernte

and in Murrinh-Patha, and how this is related to the way they sound.  These languages

contain rare sets of sounds, and the general scientific benefits from this research will

include more specific knowledge about these sounds.  I am being asked to help by doing

some of the tasks listed below.  If there are any tasks I do not want to do, I will draw a

line through them below.

I was chosen because I am a native speaker of W. Arrernte or Murrinh-Patha.

The tasks will take about ten hours of my time, in total.  Each session will last no more

than an hour.  I will meet the investigator at my convenience about once a month.  All

the procedures in this study will be administered by Victoria Anderson.  She will

always try to answer any questions I have about this work.  If I wish to stop taking part

in the study, I am free to do so at any time, for any reason.  Victoria Anderson can be

reached at the Institute for Aboriginal Development, Alice Springs, or after December

1995 at the Department of Linguistics, Campbell Hall 2101, UCLA, Los Angeles, CA

90024-1543.  (Telephone:  310-206-2808.)

I will be asked to do the tasks listed in 1 through 5 below (I have deleted any

tasks that I do not wish to do):
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1.)  List words in W. Arrernte or Murrinh-Patha as requested.

2.)  Allow Ms. Anderson to make tape recordings of my voice.

3.)  Listen to tape recordings and comment on them.

 (Before I am asked to do any of the tasks listed below, a full demonstration of the

procedure will be given by Victoria Anderson, using herself as a subject.)

4.)  Allow Ms. Anderson to paint the roof of my mouth with a mixture of olive oil and

digestive charcoal powder, and then examine or photograph the inside of my mouth and

my tongue after I have said a word.

5.)  Allow Ms. Anderson to make an impression of the front part of my mouth.  This

means placing a small amount of soft dental impression material in the space above my

tongue, behind my upper front teeth.  This material has a mild mint flavor and takes

about a minute to firm up into an impression.  I can remove it at any time if I find the

process unpleasant.

I understand that tasks 4 and 5 may tickle or be slightly uncomfortable, since

they involve having something unusual in my mouth, but that they are not harmful to

me.

I understand that I may refuse to participate or may withdraw from this study at

any time without any negative consequences.  I understand that I will be paid for the

complete amount of time during which I remain a subject.
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I understand that audio and video recordings of my speech and mouth will be

made and that these recordings will be kept for research and/or teaching purposes when

the study ends.  I understand that I have a right to review, edit or erase the recordings in

whole or in part.

The investigator may stop the study at any time.

I also understand that no information which identifies me will be released

without my separate consent except as specifically required by law.

If the study design or the use of the data is to be changed, I will be so informed

and my consent re-obtained.

I understand that if I have any questions, comments, or concerns about the study

or the informed consent process, I may write or call the office of the Vice Chancellor-

Research Programs, 3134 Murphy Hall, University of California, Los Angeles, CA

90024-1405.  (Telephone:  310-825-8714.)

I acknowledge that I have received a copy of this form.

_____________________________________(Signature)   ________________(Date)

_____________________________________(Witness)

HSPC #G93-07-087
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