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Introduction



Learning and Adaptation
• Most intelligent systems show signs of learning.

• Most biological, “alive” systems utilize adaptation.

Challenges:

• Understand the principles of learning

• Build learning machines



Machine learning is crucial in robotics and AI:

• Often easier to build a learning system than 
to hand-code a program that works. 
• Example: a walking robot on the moon. Many 

DOFs; changing environment.

• Typical tasks that require learning: 
• Speech
• Handwriting and object recognition 
• Intelligent user interfaces
• Motor behavior

• A true AI requires learning on many levels!



Machine learning is crucial for data analysis:

• Huge and very complex data sets too large to 
analyze by hand; for example:
- CERN
- data from complex systems, e.g. ecological

• High frequency task, too fast to analyze by hand; 
e.g. stock price prediction from trading data.

• Human can solve task, but can not explain how; 
e.g. character recognition.

• No human expert; e.g. DNA analysis.



Application Areas:

• Physics
• Bioinformatics
• Computer Vision
• Robotics
• Graphics
• Speech
• Financial analysis
• E-commerce
• Medicine
• Computer games
• Multimedia 

Examples:

➡ particle physics
➡ microarray data
➡ object recognition
➡ decision making
➡ realistic simulations
➡ recognition, identification
➡ option pricing
➡ data mining
➡ diagnostics, drug design
➡ adaptive opponents
➡ retrieval across databases

Machine learning is one of the 21 century’s 
core technologies.



• Supervised -- there is a teacher signal
• Unsupervised -- no teacher signal

• Example: cancer tissue (UC Irvine ML repository)

• Supervised learning: Binary classification. 
Predicting Yes/No label; here: cancer recurrent?
• Supervised learning: Regression. Predicting a 

continuous variable; here: time to recurrence.

diameter perimeter texture ... outcome time training example

13.71 20.83 90.2 ... Recurrence 77 1

13 21.82 87.5 ... Normal 119 2

12.46 24.04 83.97 ... Normal 76 3

Different kinds of learning

.

.

.



• Based on the role of the learner:     
active learning vs. passive learning

‣ Most animal learning is active! 

‣ But most results in learning theory address 
passive learning. Complications for active 
learning. E. g. data are not i.i.d.

• Based on the problem definition: 
Behavioral learning.

‣ Reinforcement learning: a reward signal is 
present (a behavioral goal is specified)

‣ Alternative theories for behavioral learning, 
e.g. based on information theory and physics.



Challenges:

• Understand the principles of learning

• Build learning machines
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• Overview of some history and core ideas
• Supervised learning: 

• Introduction to statistical learning theory
• Support Vector learning
• Feed forward neural nets
• Boltzmann machines, RBMs, deep learning

• Use of information theory in the objective function of the Boltzmann 
machine... leads us to explore:

• Physical limits of information processing... 
• ... those directly motivate information theoretic objective functions!
• Introduction to information processing far from thermodynamic 

equilibrium, information theory, etc. (selected topics).
• ...the limits also lead straight to unsupervised machine learning.
• Unsupervised learning 

• Cluster analysis
• Recurrent neural nets

• Optional: Behavioral Learning. 



Learning machines
Some historical context



Machines that learn?

• Animals learn - how?

• What is learning? 

• What is inference?

• What is a machine? 

• Machines that can think?

• Machines that can do math?



Machines that compute

• Mesopotamia (ca. 2700BC): 
Abacus. 
Pebbles (latin: calculi)

• South America (ca.2600BC): 
Quipu

• Predicting eclipses,
“Antikythera mechanism” 
(ca. 200BC, 30 gears), 
“analog computation”.

• Devices that help perform simple calculations go back to ancient 
civilizations!



Abacus vs pen and paper
a competition, 1503

“abacist vs algorist”

abacus faster, but no 
written record

(introduction of 
arabic numerals in 

Europe)



• People make mistakes, arithmetic is 
tedious, so, let’s build a machine! 

• Pascal (1642)

Adding machine



Analog computing machines
• Mechanical device for tide prediction based 

on Fourier analysis

• Lord Kelvin (1872)
10 components

• 62 components, 
Germany (1935)
(in use until 1968!)



“Modern” digital computer

• Based on 
boolean logic 
(George Boole 
1847)

• Implemented basically via switches

• Programmable

• Charles Babbage envisioned 
mechanical computers, but 
never completed one. (25,000
metal parts, 15 tons, precision 
issues.)

• Ada Lovelace wrote first 
“program” for his machine.



Probably the first built...
(Konrad Zuse 1938-41)

Z1-Z3, built in his parent’s apartment in Berlin...

Destroyed in 
1944 by WW2 

bombing

• 30,000 metal 
parts (reliability 
problems!)



... the Z4 (1950)

• 2500 electro-mechanical 
relays

• 256 byte memory 
(64 32-bit floating point 
words)

• one multiply every 3 
seconds (modern 
laptops billions of times 
faster)

First computer sold (that actually worked)
sold to ETH Zurich, Switzerland



• electronic (1000x faster than electromechanical; 356 
multiply/sec) 

• > 18,000 vacuum 
tubes

• programmed by 
plugboard and 
switches

Another historical example: american Electronic 
Numerical Integrator And Computer (ENIAC,1945)



UNIVAC
• first commercial 

computer produced in 
the US

• The first UNIVAC was 
accepted by the US 
Census Bureau on 
March 31, 1951

• 5,200 vacuum tubes, 29,000 
pounds (13 metric tons), 
consumed 125 kW

• about 1,900 operations 
per second

https://en.wikipedia.org/wiki/Vacuum_tube
https://en.wikipedia.org/wiki/Vacuum_tube


From vacuum tube computers, to transistor 
computers, integrated circuit computers, but...

ICs hundreds (1970s) ICs millions (1990s)

tubes (4 logic gates, 1950s) 8 logic gates (1960s)



... basically
all digital computers are the same

The Turing-Church thesis (very informal)
any “computable function” that one computer can do,

any other digital computer can also do;
they are all are equivalent to Turing’s machine.

(speeds may vary enormously)



Origins of “modern 
computer science” (1930s)

• Foundations were laid by some 
breakthroughs starting in the 1930s with 
the work of  Alan Turing,  Alonzo Church 
Kurt Goedel, John v. Neumann, Emil L. Post, 
and others.

• Alan Turing (1936) introduced 
abstract model of a general purpose 
computer.

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Emil_Leon_Post
https://en.wikipedia.org/wiki/Emil_Leon_Post


Ambition: understand how 
living systems think; 

understand intelligence!

• Motivation driving the great minds that started this 
“new discipline”, which is now Computer Science.

• Goes back to Alan Turing, John von Neumann, 
Norbert Wiener (cybernetics), and others, starting in 
the1930s

• Physicists and mathematicians working together with 
neuroscientists

• First models of neurons. (Pitts, McCulloch)
=> neural nets => machine learning



Cybernetics

• Information processing, control and (self-) 
regulation in the animal and the machine

• 10 Macy Conferences (1946-53); eclectic 
group of interdisciplinary participants.



• Control theory and Information theory 

• Computational neuroscience

• Neural networks (machine learning) 

• Neuromorphic engineering

• Theory of self-organization of living systems

Visionary field spun/influenced 
a many areas, for example:  



• Basis for communication (wired and wireless), 
e.g. transmitting TV signals, internet, phone.

• At the core lies the question: 

• Original intellectual motivation: move from an 
energy based description of the world to an 
information based one.

Information theory

What is information?
How to measure it?



Claude Shannon
• While Wiener attacked the hard problem of 

continuous information processing, 

• Shannon made progress by considering discrete 
symbols: he showed that to fulfill simple assumptions, 
information is best measured by log(1/p)

• Average
 
is directly related to Gibbs entropy (see E.T. Jaynes)

• Measures uncertainty, and the maximum (average) 
amount of information that can be gained by 
measuring the outcome of the random variable x

�
X

x

p(x) log[p(x)]



• Information is uncertainty reduction

• Channel capacity is the maximally 
transmittable (rate of) information
maximum over all information sources 
(x is input, y is output of the information channel)

I[X,Y ] = H[X]�H[X|Y ]

H[X] = �
X

x

p(x) log[p(x)]

H[X|Y ] = �
X

x,y

p(x, y) log[p(x|y)]

max

p(x)
I[x, y]



• A continuous signal has infinite information rate.

• But infinite resolution is irrelevant for most applications, 
some level of distortion is tolerable.

• The achievable rate of a continuous information source, 
if transmitted to finite resolution, i.e. for fixed average 
distortion is:

• Represent original signal, x, by encoded signal, s. 
Given: distortion function d(s,x); information source p(x)

• (units: convert between information in bits per symbol, 
and rate in bits per second: multiply by a constant -  
symbols per second)

R(D) := min
p(s|x)

I[s, x]

s.t.hd(s, x)i
p(s,x) = D



• Computational neuroscience produces mathematical 
models of neurons of varying degree of complexity 

• One of the first was the McCulloch-Pitts model, 
pioneered by Pitts in the early 1940s

• Simple model leads to simplest “learning machine”, the 
“Perceptron” (F. Rosenblatt 1957)

• From perceptron to multi-layer neural nets to the 
“Neocognitron”, to “deep learning”...

...we will hear more about this later...

Computational neuroscience 
to neural networks



• Interesting observation (Mead, late 1980s)
Transistors in the sub-threshold regime: 
current depends approximately exponentially 
on gate voltage. Similar current-voltage curve 
in ion channels (building blocks of cell 
membranes and neurons in the brain).

• Allows for a biology-inspired approach to 
computing, adaptive and able to learn

• analog VLSI

Neuromorphic engineering



• Achievements include:

• Silicon retina 
(Mahowald 1988)

• Silicon cochlea 
(Lyon and Mead 1988)

• Silicon neuron (Mahowald 1991)

• Silicon synapse (Dorio et al 1996)

• Cognitive systems (Indiveri et al. 2013-present)

Neuromorphic engineering

• Applications include:

• Prosthetics

• Low power devices



Back to the main track...

• Origins of neural networks come 
from mathematical descriptions of neurons 
(brain cells)

• Physicists and mathematicians working 
together with neuroscientists

• From neuron models to neural nets to 
machine learning... 



From brains to learning machines

• separate entities (Ramon y 
Cajal, Nobel Price 1906)

• connected by synapses   
(Sherington and Adrian, 
Nobel Price, 1932)

• many different types of 
neurons with different 
functionality

• Neurons: central nervous system (CNS) has ca.10^11.  They are:

Optic tectum (sparrow), drawing by Cajal



• Information processing 
within a neuron: electrical. 
Action potential 
(“spike”).

• Information processing 
between neurons: (mostly) 
chemical (exception: gap 
junctions)

Neurons communicate

http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif

Evoked Post-
Synaptic Potential 

(EPSP)

http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG
http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif


• Pre-synaptic action potential depolarizes synaptic terminal

• Voltage-sensitive calcium ion channels open => calcium enters

• Release of neurotransmitter; diffusion through synaptic cleft.

• Neurotransmitter 
binds to post-
synaptic receptors

• Ions enter post-
synaptic cell 
=> EPSP

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif

Pre-
synaptic 
action 

Potential

Evoked Post-Synaptic 
Potential (EPSP)

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif


(Temporal Integration of EPSPs)



Spatial Integration of EPSPs



Mathematical simplification

• Inputs form n neurons:

• get multiplied by weights 
at “synapses”:

• then added

• if above threshold, then 
neuron is “on”.

• Neurons are either on or off: represented by binary value.

xi

xiwi
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• Remark: add     to the input vector, in order to write the bias as
                  to get more compact form wx, rather than wx + b
b = x0w0

x0



Transfer function
• Step function: 

• Used by Pitts & 
McCulloch (1942), 
and in Rosenblatt’s 
Perceptron (1957)

• Sigmoid (used in many “modern” 
feed forward neural nets): 

• Sigmoidal function is differentiable 
(good for deriving gradient decent 
learning rule; Backpropagation 
algorithm, Werbos 1974)



Neural networks (1940s/50s)
• Pitts and McCulloch (1942/3): 

“Formal” (mathematical) 
neurons thought of as 
processing units

• Networks can emulate any 
logical function.

• D. Hebb: Connections 
between neurons can change.
“Learning rule”: strengthen 
proportional to correlation 
between activity of pre- and 
post synaptic neuron.



Perceptron

• Simplify: assume labels are binary, either -1 or +1. 
➡ Binary classification.

(Rosenblatt, 1957)

• Probably the first “learning machine”. 
Artificial neuron that solved a 
classification task (supervised 
learning):

• Given: N input vectors x together 
with labels l (these labels are the 
“teaching” signal).

• Goal: for any given input, the output 
of the classifier should be the same 
as the label. 



• adjust weights according to the correctness of the output 
until all input data in training set are classified correctly.

• error measure: compare output of the neuron (y) to desired 
output (= label, l): both are either -1 or 1, so:

‣ y*l = 1: correct classification, then:      l - y = 0

‣ y*l = -1: incorrect classification, then:  l - y = 2l

• adjust weight vector w for each misclassified input x, by 
adding l*x. This turns w towards/away from x if l=1/-1

• can do         w          w +c(l-y)x      for all training examples x

• c: step size parameter called “learning rate”;  0 < c < 1

Perceptron learning



Representational power

• the decision boundary of the 
perceptron is a line:

wx + b

• the perceptron learning 
algorithm converges if input data 
are linearly separable. 

• Novikoff (1962): Perceptron Convergence Theorem;
first margin-based error bound (in a way the “dawn” of 
statistical learning theory)



• Perceptron algorithm 
can not classify input 
data which can not be 
separated by a line. 

• For example XOR

XOR problem
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XOR problem
• Perceptron algorithm 

can not classify input 
data which can not be 
separated by a line. 

• For example XOR

• A single artificial neuron can express the boolean 
functions AND, OR, and NOT, but not XOR.  



Minsky and Papert (1969)

• Shortcomings of perceptron were 
pointed out in a fierce manner by 
proponents of symbolic AI in 
what became a very influential 
book: “Perceptrons”. 

• Their intuition was that neural 
nets would not be useful in 
practical applications.

• This put a stop to neural network 
funding, and research was 
significantly diminished.



Come-back of neural nets and 
beginnings of machine learning

• Backpropagation algorithm (Werbos, 1974). 

• Neocognitron (Fukushima, late1970s).

• Backprop re-discovered, used to train multi-layer networks 
in the 1980s: first big successes in pattern recognition.

➡ Training convolutional NNs, eventually “deep learning”. 

• 1960s-1980s:  Vapnik with Chervonenkis and others looked 
carefully at the classification problem and developed 
statistical learning theory, addressing the problem of model 
complexity control.  Foundation for: 
➡ Support Vector machines (SVM, 1963)
➡ Kernel machines (1990s)



Backpropagation

• Use differentiable transfer function

• Gradient descent over all units in 
network: use chain rule to compute gradient.

• Forward pass: compute outputs of all units starting from 
input layer, ending with output layer

• Backward pass: compute gradient starting from output layer.

• Update the weights.

• Stochastic gradient descent - helps with computational cost 
and thus speed.



Kunihiko Fukushima

• Built the first electronic retina out of 
discrete components (1970, with Y. 
Yamaguchi, M. Yasuda, S. Nagata)

• Neocognitron, the “grandfather” of 
convolutional neural nets (1979/80)



• Built the first silicon retina out of discrete 
components (19xx)

• Neocognitron, the “grandfather” of convolutional 
neural nets (1980)

Neocognitron



ca.1980s-mid 90s: 
Neural nets

• Recurrent NNs as Ising models (Hopfield)

• Boltzmann machine (Hinton, Sejnowski)

• Convolutional network trained by 
backprop alg. for hand written digit 
recognition (LeCun and others). 



1990s: SVMs, Kernels and Bayes
• Support vector machine alg. (Vapnik&Chervonenkis 1963) 

• Nonlinear classifiers via Kernel trick (Vladimir Vapnik with 
Isabelle Guyon, Bernard Moser, 1992) 

• Soft margin SVM implements empirical risk minimization 
(Vapnik and Corinna Cortes, 1995)

• More Kernel machines (Kernel PCA etc., Bernhard 
Schoelkopf, A. Smolla, and many others)

• Bayesian Inference and probabilistic foundations of ML 
(MacKay, Neal, Hinton, Bishop, Jordan,...)

• Increasing amount of information theory applied to machine 
learning, and to neuroscience (Bialek and others)



New Millenium
• Proliferation of ML methods!

• Many new application areas 

• “Big data”

• NNs big comeback in “deep learning”

• New hardware: 

• GPUs 

• Quantum computers... ?!

• Quantum Machine Learning



• This is just a selection... 

• NIPS conference proceedings 
(Neural Information 
Processing Systems)

• Journal of Machine learning 
research

• Other conferences, such as 
UAI (Uncertainty in Artificial 
Intelligence), ICML(Int. Conf. 
Machine Learning)

• Obscure “old” books

ML techniques

Image stolen from Chris Bishop’s lecture 
at MLSS 2013,  MPI Tuebingen 

http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence


Ack! Too much “stuff”
• Are there some simple principles? 

• Is there physical reality behind all of this?

‣ Living systems are physical systems.  Can we 
find physical principles to guide us through the 
jungle of learning and data processing 
algorithms?

• Study physical limits of information processing... 

• Hope to get to building principles!



Homework
• Implement perceptron learning algorithm: N Inputs x & labels l

‣ Initialize weight vector w 

‣ While there exist misclassified examples:

‣ Compute output y =  (wx ) 

‣ For each example, update the weights:  w += c(l -y )x

• Play around with the parameter (learning rate) and the input data, 
and verify for yourself what the Perceptron can and can not do

‣ Make a movie of Perceptron converging, and one of Perceptron 
failing on the XOR.

• What else do you notice?

‣ Is every solution the same? If not, are some “better” than others 
in some sense? 

j j

✓j j

j j j



BREAK



Organizational items

• Ask questions! 

• 3-5 Homework projects (no Midterm): Oral presentation. 
40% of grade. 

• Final project: Oral presentation, and written report. 
40% of grade.

• Final exam (multiple choice): 20 % of grade.

• Form study groups and work in groups for HW and 
projects.

• Student feedback welcome -- you can shape the course of the 
lectures buy expressing your interests!



how to contact me
• best: you can talk to me any time! 

don’t be shy

• second best: email 
sstill @ hawaii . edu

Take a look at my website!
www2.hawaii.edu/~sstill/ 

where you can find all information, 
including office hours, publications, open projects


