MATH 431 - REAL ANALYSIS CONSTRUCTING THE REAL NUMBERS

Define the real numbers \mathbb{R} to be the non-empty set of objects with two binary operations + (addition) and · (multiplication) such that the following ten axioms hold. In what follows, assume that $x, y, z \in \mathbb{R}$.

The first five axioms establish \mathbb{R} as a *field*.

- 1. Commutativity: x + y = y + x and xy = yx.
- 2. ASSOCIATIVITY: x + (y + z) = (x + y) + z and (xy)z = x(yz).
- 3. Distributivity: x(y+z) = xy + xz.
- 4. ADDITIVE INVERSES: For any $x, y \in \mathbb{R}$, there exists a $z \in \mathbb{R}$ such that x + z = y.
 - (a) Such a z is denoted by y x.
 - (b) The real number x x is dented by 0. Note: the definition of 0 is independent of x.
 - (c) 0-x is denoted by -x.
- 5. Multiplicative Inverses:
 - (a) There exists at least one real number $x \neq 0$.
 - (b) If $x, y \in \mathbb{R}$ and $x \neq 0$, there exists $z \in \mathbb{R}$ such that xz = y.
 - (c) Such a z is denoted by y/x.
 - (d) The number x/x is denoted by 1. Note: the definition of 1 is independent of x.
 - (e) For $x \neq 0$, 1/x is denoted b x^{-1} .

Furthermore, \mathbb{R} is equipped with a relation < such that the following four order axioms hold.

- 6. Total Order: Exactly one of the following relations hold: x < y, y < x, or x = y.
- 7. TRANSLATION INVARIANT: If x < y, then for every $z \in \mathbb{R}$, x + z < y + z.
- 8. Closure of Positivity under Multiplication: If x>0 and y>0, then xy>0.
 - (a) A real number x is called *positive* if x > 0 and *negative* is x < 0.
 - (b) Denote by \mathbb{R}^+ the set of positive real numbers and \mathbb{R}^- the set of negative real numbers.
- 9. Transitivity: If x > y and y > z, then x > z.

The last (and most distinctive) axiom is the Completeness Axiom.

10. Completeness Axiom: Every non-empty set S of real numbers that is bounded above has a supremum. In other words, there exists a real number b such that $b = \sup S$.