## Math 431 - Real Analysis <br> Constructing the Real Numbers

Define the real numbers $\mathbb{R}$ to be the non-empty set of objects with two binary operations + (addition) and $\cdot$ (multiplication) such that the following ten axioms hold. In what follows, assume that $x, y, z \in \mathbb{R}$.
The first five axioms establish $\mathbb{R}$ as a field.

1. Commutativity: $x+y=y+x$ and $x y=y x$.
2. ASSOCIATIVITY: $x+(y+z)=(x+y)+z$ and $(x y) z=x(y z)$.
3. Distributivity: $x(y+z)=x y+x z$.
4. Additive Inverses: For any $x, y \in \mathbb{R}$, there exists a $z \in \mathbb{R}$ such that $x+z=y$.
(a) Such a $z$ is denoted by $y-x$.
(b) The real number $x-x$ is dented by 0 . Note: the definition of 0 is independent of $x$.
(c) $0-x$ is denoted by $-x$.
5. Multiplicative Inverses:
(a) There exists at least one real number $x \neq 0$.
(b) If $x, y \in \mathbb{R}$ and $x \neq 0$, there exists $z \in \mathbb{R}$ such that $x z=y$.
(c) Such a $z$ is denoted by $y / x$.
(d) The number $x / x$ is denoted by 1 . Note: the definition of 1 is independent of $x$.
(e) For $x \neq 0,1 / x$ is denoted $\mathrm{b} x^{-1}$.

Furthermore, $\mathbb{R}$ is equipped with a relation $<$ such that the following four order axioms hold.
6. Total Order: Exactly one of the following relations hold: $x<y, y<x$, or $x=y$.
7. Translation Invariant: If $x<y$, then for every $z \in \mathbb{R}, x+z<y+z$.
8. Closure of Positivity under Multiplication: If $x>0$ and $y>0$, then $x y>0$.
(a) A real number $x$ is called positive if $x>0$ and negative is $x<0$.
(b) Denote by $\mathbb{R}^{+}$the set of positive real numbers and $\mathbb{R}^{-}$the set of negative real numbers.
9. Transitivity: If $x>y$ and $y>z$, then $x>z$.

The last (and most distinctive) axiom is the Completeness Axiom.
10. Completeness Axiom: Every non-empty set $S$ of real numbers that is bounded above has a supremum. In other words, there exists a real number $b$ such that $b=\sup S$.

