
Math 431 - Real Analysis I
Test 2

Instructions: On a separate sheet of paper, write your solutions neatly and carefully. In your proofs,
no “Discussion” is needed, but complete, well-written proofs are required for full credit. Unless otherwise
stated, let S and T be metric spaces with metric functions dS and dT , respectively.

Question 1. Let f, g : R → R be continuous functions and let a, b ∈ R be distinct real numbers. If
f(a) ≤ g(a) and g(b) ≤ f(b), show that a some point c ∈ [a, b], f(c) = g(c).

Solution 1. Consider the function h(x) = f(x)− g(x). Since f and g are continuous, then h is continuous.
Notice that h(c) = 0 if and only if f(c) = g(c). We wish to apply Bolzano’s Theorem to h. Consider h(a).
Since f(a) ≤ g(a), then h(a) = f(a)− g(a) ≤ 0. If h(a) = 0, then, f(a) = g(a) and we are done. So, assume
that h(a) < 0. Now consider that h(b) = f(b)− g(b). Since g(b) ≤ f(b), we have that h(b) = f(b)− g(b) ≥ 0.
Again, if h(b) = 0, then f(b) = g(b) and we are done. If not, then h(b) > 0. Thus, we are left with a case
where h(a) < 0 and h(b) > 0. Thus, by Bolzano’s Theorem, h has a root c ∈ (a, b). Thus, h(c) = 0 and
f(c) = g(c), as desired.

Question 2. Consider the function

f(x) =

{
cos

(
1
x

)
if x 6= 0

0 if x = 0
.

Show that f is discontinuous at 0.

Solution 2. Consider the sequence xn =
1

2πn
. Notice that xn → 0 and that f(0) = 0. Also, we have that

f(xn) = cos

(
1

xn

)
= cos

(
1

1/2πn

)
= cos(2πn) = 1.

Thus, f(xn)→ 1 6= 0 = f(0). So, f is not continuous at 0.

Question 3. In class, we proved the Squeeze Theorem for sequences. Here, you are asked to prove the
Squeeze Theorem for functions. That is, let f, g, h : R→ R with f(x) ≤ g(x) ≤ h(x) for all x. Show that if

lim
x→a

f(x) = L = lim
x→a

h(x),

then lim
x→a

g(x) = L.

Solution 3. Let ε > 0. Since limx→a f(x) = L, there exists a δf such that whenever 0 < |x − a| < δf ,
then |f(x) − L| < ε. Thus, −ε < f(x) − L < ε. Similarly, since limx→a h(x) = L, there exists a δh such
that whenever 0 < |x − a| < δg, then |h(x) − L| < ε. Thus, −ε < h(x) − L < ε. Choose δ = min{δf , δg}.
We will show that whenever 0 < |x − a| < δ, then |g(x) − L| < ε. By the above, for x values satisfying,
0 < |x − a| < δ we have that −ε < f(x) − L. Since f(x) ≤ g(x), we have that −ε < f(x) − L ≤ g(x) − L.
Also, by the above, for x satisfying 0 < |x − a| < δ, we have that h(x) − L < ε. Since g(x) ≤ h(x), then
g(x)− L ≤ h(x)− L < ε. THus, we have that −ε < g(x)− L < ε. So, |g(x)− L| < ε. So, limx→a g(x) = L.
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Question 4. Let a ∈ S be an isolated point of S. Show that any function f : S → T is continuous at a.

Solution 4. Let a ∈ S be an isolated point. Then there exists some δ > 0 such that B(a; δ)∩ S = {a}. Let
ε > 0. Notice that for all x ∈ BS(a; δ) = {a}, then x = a. Thus, dT (f(x), f(a)) = dT (f(a), f(a) = 0 < ε.
Thus, f is continuous at a.

Question 5. Consider the recursive sequence given by x1 = 2 and

xn+1 = 2− 1

xn
.

(a) Compute x1, x2, x3, x4, and x5. Keep your answers as fractions.

(b) Show that xn ≥ 1 for all n.

(c) Show that xn is a decreasing sequence.

(d) Show that xn converges.

Solution 5.

(a) When n = 1, x1 = 2. When n = 2, x2 = 3/2. When n = 3,, x3 = 4/3. When n = 4, x4 = 5/4. When
n = 5, x5 = 6/5.

(b) Let P (n) be the statement that xn ≥ 1. We will show that P (n) is true for all n ≥ 1. For the base case,
consider P (1). Notice that x1 = 2 > 1. Now, assume that P (k) is true for some k ≥ 1. We will show

that P (k + 1) is true. Thus, we know that xk ≥ 1. Thus,
1

xk
≤ 1. Thus,

xk+1 = 2− 1

xk
≥ 2− 1 = 1.

(c) Let P (n) be the statement that xn ≥ xn+1. We will show that P (n) is true for all n ≥ 1. For the base
case, consider P (1). Note that x1 = 2 and x2 = 1.5. Thus, x1 ≥ x2. Now, assume that P (k) is true
for some k ≥ 1. We will show that P (k + 1) is true. Since P (k) is true, then we know that xk ≥ xk+1.

Since xn > 0 for all n, then
1

xk+1
≤ 1

xk
. Thus, we have that

xk+2 = 2− 1

xk+1
≥ 2− 1

xk
= xk+1.

Thus, by induction xn+1 ≥ xn for all n ≥ 1.

(d) By the above, xn is a decreasing sequence that is bounded below. Thus, it converges.

Question 6. Let xn and yn be real sequences. Assume that yn → 0 and that xn is bounded. Thus, there
exists some number M such that |xn| < M for all n. Show that the product sequence xn · yn also converges
to 0.

Solution 6. Let ε > 0. Since yn → 0, there exists an N such that for all n > N , |xn − 0| < ε

M
Thus,

M |xn| < ε. For this N , for n > N , we have that

|xn · yn − 0| = |xnyn| = |xn| · |yn| < M |xn| < ε.
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Thus, xn · yn → 0

Extra Credit Question. Find the closed form equation for the xn given recursively in Question 5. A
complete answer will have the correct equation “xn = . . .” that is not expressed recursively, as well as a
proof (try induction) that your equation is correct.

Extra Credit Solution. The closed form for xn is

xn =
n+ 1

n

for n ≥ 1. Let A(n) be the statement that xn =
n+ 1

n
. For the base case, notice that x1 = 2 =

1 + 1

1
. Now,

assume that A(k) is true for some k ≥ 1. Then,

xk+1 = 2− 1

xn
= 2− 1

n+1
n

= 2− n

n+ 1
=

2n+ 2

n+ 1
− n

n+ 1
=
n+ 2

n+ 1
=

(n+ 1) + 1

n+ 1
.

Thus, A(k + 1) holds.
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