Math 431 - Real Analysis I
 Test 2

Instructions: On a separate sheet of paper, write your solutions neatly and carefully. In your proofs, no "Discussion" is needed, but complete, well-written proofs are required for full credit. Unless otherwise stated, let S and T be metric spaces with metric functions d_{S} and d_{T}, respectively.

Question 1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions and let $a, b \in \mathbb{R}$ be distinct real numbers. If $f(a) \leq g(a)$ and $g(b) \leq f(b)$, show that a some point $c \in[a, b], f(c)=g(c)$.

Solution 1. Consider the function $h(x)=f(x)-g(x)$. Since f and g are continuous, then h is continuous. Notice that $h(c)=0$ if and only if $f(c)=g(c)$. We wish to apply Bolzano's Theorem to h. Consider $h(a)$. Since $f(a) \leq g(a)$, then $h(a)=f(a)-g(a) \leq 0$. If $h(a)=0$, then, $f(a)=g(a)$ and we are done. So, assume that $h(a)<0$. Now consider that $h(b)=f(b)-g(b)$. Since $g(b) \leq f(b)$, we have that $h(b)=f(b)-g(b) \geq 0$. Again, if $h(b)=0$, then $f(b)=g(b)$ and we are done. If not, then $h(b)>0$. Thus, we are left with a case where $h(a)<0$ and $h(b)>0$. Thus, by Bolzano's Theorem, h has a root $c \in(a, b)$. Thus, $h(c)=0$ and $f(c)=g(c)$, as desired.

Question 2. Consider the function

$$
f(x)=\left\{\begin{array}{ll}
\cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

Show that f is discontinuous at 0 .

Solution 2. Consider the sequence $x_{n}=\frac{1}{2 \pi n}$. Notice that $x_{n} \rightarrow 0$ and that $f(0)=0$. Also, we have that

$$
f\left(x_{n}\right)=\cos \left(\frac{1}{x_{n}}\right)=\cos \left(\frac{1}{1 / 2 \pi n}\right)=\cos (2 \pi n)=1 .
$$

Thus, $f\left(x_{n}\right) \rightarrow 1 \neq 0=f(0)$. So, f is not continuous at 0 .

Question 3. In class, we proved the Squeeze Theorem for sequences. Here, you are asked to prove the Squeeze Theorem for functions. That is, let $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x) \leq g(x) \leq h(x)$ for all x. Show that if

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then $\lim _{x \rightarrow a} g(x)=L$.
Solution 3. Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists a δ_{f} such that whenever $0<|x-a|<\delta_{f}$, then $|f(x)-L|<\varepsilon$. Thus, $-\varepsilon<f(x)-L<\varepsilon$. Similarly, since $\lim _{x \rightarrow a} h(x)=L$, there exists a δ_{h} such that whenever $0<|x-a|<\delta_{g}$, then $|h(x)-L|<\varepsilon$. Thus, $-\varepsilon<h(x)-L<\varepsilon$. Choose $\delta=\min \left\{\delta_{f}, \delta_{g}\right\}$. We will show that whenever $0<|x-a|<\delta$, then $|g(x)-L|<\varepsilon$. By the above, for x values satisfying, $0<|x-a|<\delta$ we have that $-\varepsilon<f(x)-L$. Since $f(x) \leq g(x)$, we have that $-\varepsilon<f(x)-L \leq g(x)-L$. Also, by the above, for x satisfying $0<|x-a|<\delta$, we have that $h(x)-L<\varepsilon$. Since $g(x) \leq h(x)$, then $g(x)-L \leq h(x)-L<\varepsilon$. THus, we have that $-\varepsilon<g(x)-L<\varepsilon$. So, $|g(x)-L|<\varepsilon$. So, $\lim _{x \rightarrow a} g(x)=L$.

Question 4. Let $a \in S$ be an isolated point of S. Show that any function $f: S \rightarrow T$ is continuous at a.
Solution 4. Let $a \in S$ be an isolated point. Then there exists some $\delta>0$ such that $B(a ; \delta) \cap S=\{a\}$. Let $\varepsilon>0$. Notice that for all $x \in B_{S}(a ; \delta)=\{a\}$, then $x=a$. Thus, $d_{T}(f(x), f(a))=d_{T}(f(a), f(a)=0<\varepsilon$. Thus, f is continuous at a.

Question 5. Consider the recursive sequence given by $x_{1}=2$ and

$$
x_{n+1}=2-\frac{1}{x_{n}}
$$

(a) Compute $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}. Keep your answers as fractions.
(b) Show that $x_{n} \geq 1$ for all n.
(c) Show that x_{n} is a decreasing sequence.
(d) Show that x_{n} converges.

Solution 5.

(a) When $n=1, x_{1}=2$. When $n=2, x_{2}=3 / 2$. When $n=3, x_{3}=4 / 3$. When $n=4, x_{4}=5 / 4$. When $n=5, x_{5}=6 / 5$.
(b) Let $P(n)$ be the statement that $x_{n} \geq 1$. We will show that $P(n)$ is true for all $n \geq 1$. For the base case, consider $P(1)$. Notice that $x_{1}=2>1$. Now, assume that $P(k)$ is true for some $k \geq 1$. We will show that $P(k+1)$ is true. Thus, we know that $x_{k} \geq 1$. Thus, $\frac{1}{x_{k}} \leq 1$. Thus,

$$
x_{k+1}=2-\frac{1}{x_{k}} \geq 2-1=1
$$

(c) Let $P(n)$ be the statement that $x_{n} \geq x_{n+1}$. We will show that $P(n)$ is true for all $n \geq 1$. For the base case, consider $P(1)$. Note that $x_{1}=2$ and $x_{2}=1.5$. Thus, $x_{1} \geq x_{2}$. Now, assume that $P(k)$ is true for some $k \geq 1$. We will show that $P(k+1)$ is true. Since $P(k)$ is true, then we know that $x_{k} \geq x_{k+1}$. Since $x_{n}>0$ for all n, then $\frac{1}{x_{k+1}} \leq \frac{1}{x_{k}}$. Thus, we have that

$$
x_{k+2}=2-\frac{1}{x_{k+1}} \geq 2-\frac{1}{x_{k}}=x_{k+1} .
$$

Thus, by induction $x_{n+1} \geq x_{n}$ for all $n \geq 1$.
(d) By the above, x_{n} is a decreasing sequence that is bounded below. Thus, it converges.

Question 6. Let x_{n} and y_{n} be real sequences. Assume that $y_{n} \rightarrow 0$ and that x_{n} is bounded. Thus, there exists some number M such that $\left|x_{n}\right|<M$ for all n. Show that the product sequence $x_{n} \cdot y_{n}$ also converges to 0 .

Solution 6. Let $\varepsilon>0$. Since $y_{n} \rightarrow 0$, there exists an N such that for all $n>N,\left|x_{n}-0\right|<\frac{\varepsilon}{M}$ Thus, $M\left|x_{n}\right|<\varepsilon$. For this N, for $n>N$, we have that

$$
\left|x_{n} \cdot y_{n}-0\right|=\left|x_{n} y_{n}\right|=\left|x_{n}\right| \cdot\left|y_{n}\right|<M\left|x_{n}\right|<\varepsilon
$$

Thus, $x_{n} \cdot y_{n} \rightarrow 0$

Extra Credit Question. Find the closed form equation for the x_{n} given recursively in Question 5. A complete answer will have the correct equation " $x_{n}=\ldots$ " that is not expressed recursively, as well as a proof (try induction) that your equation is correct.

Extra Credit Solution. The closed form for x_{n} is

$$
x_{n}=\frac{n+1}{n}
$$

for $n \geq 1$. Let $A(n)$ be the statement that $x_{n}=\frac{n+1}{n}$. For the base case, notice that $x_{1}=2=\frac{1+1}{1}$. Now, assume that $A(k)$ is true for some $k \geq 1$. Then,

$$
x_{k+1}=2-\frac{1}{x_{n}}=2-\frac{1}{\frac{n+1}{n}}=2-\frac{n}{n+1}=\frac{2 n+2}{n+1}-\frac{n}{n+1}=\frac{n+2}{n+1}=\frac{(n+1)+1}{n+1} .
$$

Thus, $A(k+1)$ holds.

