Math 431 - Real Analysis I Test 2 Review Sheet

LOGISTICS: Our test will occur on Monday, November 5. It will be a 110 minute, no notes, no calculator test. Please bring blank paper on which you will write your solutions.

The successful test-taker will have mastered the following concepts.

SEQUENCES IN GENERAL METRIC SPACES

- · Show that a sequence in a metric space does or does not converge using the ε -N definition of convergence.
- · Show that a sequence x_n in a metric space converges to a by showing that $d(x_n, a) \to 0$.

CAUCHY SEQUENCES

- · Understand that in any metric space, a convergent sequence is Cauchy
- · Understand that in \mathbb{R} (and other complete metric spaces), Cauchy sequences converge.
- · Show that a sequence is Cauchy using its εN definition.
- · Show that a sequence converges by showing it's Cauchy (even though you may not know the limit).

LIMITS AND CONTINUOUS FUNCTIONS

- · Prove that for a function $f: \mathbb{R} \to \mathbb{R}$ that $\lim_{x \to a} f(x) = L$ using the $\varepsilon \delta$ definition of the limit.
- · Show that a function is continuous at a point using the $\varepsilon \delta$ definition of continuity.
- · Show that a function is not continuous at a point using the $\varepsilon \delta$ definition of continuity.
- · Know the various properties of continuous functions from \mathbb{R} to \mathbb{R} .

CONTINUITY IN GENERAL METRIC SPACES

- · Use various properties of pre-images to compute the pre-image of a given set under a given function
- · Use the fact that $f: S \to T$ is continuous if and only if for every open $U \subset T$, $f^{-1}(U)$ is open in S.
- · Use the similar fact to the above, but with closed sets instead of open sets.

CONTINUITY AND CONVERGENCE

· Show that a function $f: S \to T$ is not continuous at a by finding a sequence $x_n \to a$ in S but that $f(x_n) \not\to f(a)$ in T.

CONTINUOUS FUNCTIONS ON COMPACT SETS

- · Use the fact that continuous images of compact sets are compact.
- · Use the fact that if $f: S \to \mathbb{R}$ is a continuous function, then f attains a maximum and a minimum.

Bolzano's Theorem and the Intermediate Value Theorem

- · Use Bolzano's Theorem to show that a function $f: \mathbb{R} \to \mathbb{R}$ that changes sign has a root.
- · Use the Intermediate Value Theorem to show that a continuous function takes on all intermediate values.