Math 431 - Real Analysis I Solutions to Test 1

Question 1. Below, you are given an *open* set S and a point $\mathbf{x} \in S$. Thus, by definition of openness, there exists an $\varepsilon > 0$ such that

$$B(\mathbf{x};\varepsilon)\subset S$$
.

Your job is to do the following:

- (i) Provide such an $\varepsilon > 0$ that "works".
- (ii) Show that your ε is actually positive.

NOTE: There is no need to prove that $B(\mathbf{x}; \varepsilon) \subset S$...that would take too long!

- (a) Let $x \in (a,b)$ [the open interval in \mathbb{R} from a to b]. What is an $\varepsilon > 0$ such that $B(x;\varepsilon) \subset (a,b)$?
- (b) Let $(u,v) \in T$, where $T = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1\}$. What is an $\varepsilon > 0$ such that $B((u,v);\varepsilon) \subset T$?
- (c) Let $(u, v, w) \in (0, 1) \times (0, 1) \times (0, 1)$ [the "unit open cube" in \mathbb{R}^3]. What is an $\varepsilon > 0$ such that $B((u, v, w); \varepsilon) \subset (0, 1) \times (0, 1) \times (0, 1)$?

Solution 1.

- (a) Let $\varepsilon = \min\{x a, b x\}$. Since $x \in (a, b)$, then a < x < b. Thus, x a > 0 and b x > 0. So, since the minimum of two positive numbers is positive, then $\varepsilon > 0$.
- (b) Let $\varepsilon = \min\{u, 1 u\}$. Since $(u, v) \in T$, then 0 < u < 1. Thus, u > 0 and 1 u > 0. Since the minimum of two positive numbers is positive, $\varepsilon > 0$.
- (c) Let $\varepsilon = \min\{u, 1-u, v, 1-v, w, 1-w\}$. Since $(u, v, w) \in (0, 1) \times (0, 1) \times (0, 1)$. Then 0 < u < 1, 0 < v < 1, and 0 < w < 1. Thus, u, 1-u, v, 1-v, w, and 1-w are all positive. Since the minimum of positive numbers is positive, $\varepsilon > 0$.

Question 2. Let $\{x_n\}$ be a real sequence such that $x_n > 0$ for all n. Show that if x_n converges, then its limit is non-negative. A proof by contradiction might be helpful here.

Solution 2. Assume, to the contrary, that $x_n \to p$ where p < 0. Note that -p/2 > 0. Then, since $x_n \to p$, there exists some N such that for all n > N, $|x_n - p| < -p/2$. Thus, for all n > N,

$$p/2 < x_n - p < -p/2.$$

In particular, using the second inequality and adding p to both sides, we get that $x_n < p/2$. Since p < 0, p/2 < 0 so $x_n < 0$ for all n > N. This contradicts that x_n is a positive sequence. Thus, $x_n \to p$ where $p \ge 0$.

Question 3. Let S be a non-empty *open* subset of \mathbb{R} that is bounded above. Show that $\sup S$ exists but that $\max S$ does not exist.

Solution 3. Since S is a non-empty open set that is bounded, by the Completeness Axiom, $\sup S$ exists. We will show that $\max S$ does not exist. Assume, to the contrary, that it does; then, $\max S \in S$. Since S is open, $\max S$ is interior and there exists an $\varepsilon > 0$ such that $B(\max S; \varepsilon) \subset S$. In particular, $\max S + \varepsilon/2 \in B(\max S; \varepsilon)$ and so $\max S + \varepsilon/2 \in S$. However, since $\max S + \varepsilon/2 > \max S$, this contradicts that $\max S$ is the maximal element. Thus, $\max S$ does not exist.

Question 4. Consider the real sequence $\{x_n\}$ given by

$$x_n = \frac{1}{\ln n}$$

for $n \geq 2$. Provide an $\varepsilon - N$ proof that $x_n \to 0$.

Solution 4. Given $\varepsilon > 0$, let $N = e^{1/\varepsilon}$. Then, for all $n > N = e^{1/\varepsilon}$, we have that

$$e^{1/\varepsilon} < n$$
.

Taking the natural logarithm of both sides, we have that

$$\frac{1}{\varepsilon} < \ln n.$$

Since $n \ge 2$, $\ln n > 0$ and $\varepsilon > 0$. So we can cross divide to get that

$$\frac{1}{\ln} < \varepsilon$$
.

This is equivalent to

$$\left|\frac{1}{\ln n} - 0\right| < \varepsilon.$$

So, $1/\ln n \to 0$.

Question 5. Consider the sequence in \mathbb{R}^2 given by

$$x_n = \left(\frac{1}{n}\cos\left(\frac{\pi n}{2}\right), \frac{1}{n}\sin\left(\frac{\pi n}{2}\right)\right).$$

Recall that we can equip \mathbb{R}^2 with several metrics, including the following:

· The L^2 metric, given by

$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

· The L^1 metric, given by

$$d_1((x_1, y_1)) = |x_1 - x_2| + |y_1 - y_2|.$$

- The L^{∞} metric, given by $d_{\infty}((x_1, y_1)) = \max\{|x_1 x_2|, |y_1 y_2|\}$
- · The discrete metric, given by

$$d_d((x_1, y_1), (x_2, y_2)) = \begin{cases} 1 & \text{if } (x_1, y_1) \neq (x_2, y_2) \\ 0 & \text{if } (x_1, y_1) = (x_2, y_2) \end{cases}$$

- (a) Compute the L^2 distance between x_n and (0,0). That is, compute $d_2(x_n,(0,0))$. Your answer should be written in terms of n.
- (b) Use (a) to show that $x_n \to (0,0)$ with the L^2 metric.
- (c) Compute the L^1 distance between x_n and (0,0). That is, compute $d_1(x_n,(0,0))$. Your answer should be written in terms of n.
- (d) Use (c) to show that $x_n \to (0,0)$ with the L^1 metric.
- (e) Compute the L^{∞} distance between x_n and (0,0). That is, compute $d_{\infty}(x_n,(0,0))$. Your answer should be written in terms of n.
- (f) Use (d) to show that $x_n \to (0,0)$ in the L^{∞} metric.
- (g) Show that x_n does not converge to (0,0) in the discrete

Solution 5.

(a) We compute the L^2 distance as

$$d_2(x_n, (0,0)) = \sqrt{\left(\frac{1}{n}\cos\left(\frac{n\pi}{2}\right)\right) + \left(\frac{1}{n}\sin\left(\frac{n\pi}{2}\right)\right)^2} = \frac{1}{n}.$$

- (b) Since the distance is 1/n and $1/n \to 0$ in \mathbb{R} , then $x_n \to (0,0)$.
- (c) We compute the L^1 distance as

$$d_1(x_n, (0, 0)) = \left| \frac{1}{n} \cos \left(\frac{n\pi}{2} \right) - 0 \right| + \left| \frac{1}{n} \sin \left(\frac{n\pi}{2} \right) - 0 \right| =$$

$$\left| \frac{1}{n} \cos \left(\frac{n\pi}{2} \right) \right| + \left| \frac{1}{n} \sin \left(\frac{n\pi}{2} \right) \right| =$$

$$\left| \frac{1}{n} \left| \left(\left| \cos \left(\frac{n\pi}{2} \right) \right| + \left| \sin \left(\frac{n\pi}{2} \right) \right| \right).$$

Notice that $\cos(n\pi/2)$ and $\sin(n\pi/2)$ take on the values -1,0, or 1. In particular, when one is 0, the other is ± 1 and vice versa. Thus, in absolute values, exactly one is 0 and one is 1. So, our distance reduces to

$$d_1(x_n, (0,0)) = 1/n.$$

- (d) From (c), $d_1(x_n, (0,0)) = 1/n \to 0$. Thus, $x_n \to (0,0)$ in the L^1 metric.
- (e) We compute the L^{∞} distance as

$$d_{\infty}(x_n, (0, 0)) = \max \left\{ \left| \frac{1}{n} \cos \left(\frac{n\pi}{2} \right) - 0 \right|, \left| \frac{1}{n} \sin \left(\frac{n\pi}{2} \right) - 0 \right| \right\} =$$

$$\max \left\{ \left| \frac{1}{n} \cos \left(\frac{n\pi}{2} \right) \right|, \left| \frac{1}{n} \sin \left(\frac{n\pi}{2} \right) \right| \right\} =$$

$$\left| \frac{1}{n} \right| \max \left\{ \left| \cos \left(\frac{n\pi}{2} \right) \right|, \left| \sin \left(\frac{n\pi}{2} \right) \right| \right\}.$$

As mentioned above, the two terms are either 0 or 1 at opposite times. Thus, the maximum is equal to 1. So, the distance is given by

$$d_{\infty}(x_n,(0,0)) = \frac{1}{n}.$$

- (f) From (e), we have that $d_{\infty}(x_n,(0,0)) = \frac{1}{n} \to 0$. Thus, $x_n \to (0,0)$.
- (g) Notice that for all n, $|\cos(n\pi/2)| \neq |\sin(n\pi/2)|$. Thus, in particular, they are never both 0 at the same time. So, they are never equal to (0,0). So, $d_d(x_n,(0,0)) = 1$ for all n. This does not converge to 0, so $x_n \neq (0,0)$ (or any other point).

Question 6.

- (a) Show that every compact subset $S \subset \mathbb{R}$ contains a maximum and a minimum element.
- (b) Show that the statement "If $S \subset \mathbb{R}$ contains a maximum and a minimum element, then S is compact" is false by finding a counterexample.

Solution 6.

- (a) Since S is compact, it is closed and bounded. Since it is bounded and non-empty, the supremum exists. Since the supremum is an adherent point and S is closed, the supremum is an element of the set. Thus, max S exists. A similar argument shows that min S exists.
- (b) Consider the set $S = [0,1) \cup (2,3]$. Clearly 0 and 3 are the max and min, respectively, of S. However, notice that S is not compact since it is not closed. In particular, its complement is $(-\infty,0) \cup [1,2] \cup (3,\infty)$, which has 1 as a non-interior point. Thus, since the complement is not open, the set S is not closed. Thus, by the Heine-Borel Theorem, S is not compact.

Extra Credit:

(a) Give the equation for the L^p metric on \mathbb{R}^2 .

Extra Credit Solution.

(a) The L^p metric on \mathbb{R}^2 is given by

$$d((x_1, y_1), (x_2, y_2)) = (|x_1 - x_2|^p + |y_1 - y_2|^p)^{1/p}$$