Math 431 - Real Analysis I Test 1 Review Sheet

LOGISTICS: Our test will occur on Monday, October 15. It will be a 110 minute, no notes, no calculator test. Please bring blank paper on which you will write your solutions.

The successful test-taker will have mastered the following concepts.

THE AXIOMATIC FOUNDATION OF THE REAL LINE

- · Know the 10 real number axioms: 5 field axioms, 4 order axioms, and 1 completeness axiom
- · Use the 10 real number axioms to prove well-known facts about the real numbers and their ordering.

PROPERTIES OF THE INTEGERS

- · Definition of an inductive set of real numbers
- · Definition of \mathbb{Z}_+ as an inductive set.
- · Bezout's Identity for the gcd of two integers
- · Euclid's Lemma
- · The role of primes in divisibility statements (e.g., if p|ab, then p|a or p|b).
- \cdot The unique factorization theorem for integers

Properties of Rational Numbers

- · Use proof by contradiction to prove that a number is irrational.
- · Use the fact that \mathbb{Q} is a field (and is thus closed under the four operations)

BOUNDS, SUPREMA, AND INFIMA

- · Know the definition of bounded above, bounded below, bounded, maximum, minimum
- · Know the definition of a supremum/infimum; use the Completeness Axiom to prove that they exist.
- · Prove that a number is a supremum or infimum for a given set.
- · Use the approximation theorem for suprema in proofs
- · Use the additive and comparison properties for suprema

Applications of the Completeness Axiom

- · Know the proof that \mathbb{Z}_+ is an unbounded set and how to use it in proofs.
- · Know the Archimedean Property and how to use it in proofs.

EUCLIDEAN SPACE AND ITS METRIC

- · Know the definition of \mathbb{R}^n as well as the vector space and metric properties of \mathbb{R}^n .
- · Know how to compute the distance between two points in \mathbb{R}^n .

- · Know the Caucy-Schwarz inequality and how to apply it in proofs and to obtain new inequalities.
- · Know the various metric properties of \mathbb{R}^n (e.g., triangle inequality, positive-definiteness, symmetry).

The Topology of \mathbb{R}^n

- · Definition of the open n-ball $B(\mathbf{x}; r)$.
- · Definition of an interior point of a set; know how to show a point is or is not interior to a set.
- · Definition of an open set; know how to show a set is or is not open.
- · Basic topological properties of open sets (closed under unions and finite intersections)
- · Definition of a closed set; showing a set is closed; topological properties of closed sets.

Adherent Points and Accumulation Points

- · Know the definition of an adherent point; show that that a point does or does not adhere to a set.
- · Know the definition of an accumulation point; show that a point is or is not an accumulation point of a set.
- · Know the subtle but important difference between an accumulation point and an adherent point. (e.g., isolated points)
- · Show that a set is or is not discrete.
- · Understand the relationship between closed sets, adherent points, and accumulation points.
- · Given a set, find its closure and its derived set.

The Analytic Properties of \mathbb{R}

- · Know the Bolzano-Weierstrass Theorem and when to apply it
- · Know the Cantor Intersection Theorem and when to apply it
- · Understand what properties of \mathbb{R} allow the above two theorems to hold

OPEN COVERS AND COMPACTNESS

- · Show that a collection of sets \mathcal{F} is an open cover for a set S. In particular, be comfortable with the nuanced notation
- · Show that a cover has no finite subcover
- · Use the Lindelöf Covering Theorem to reduce an open cover for a subset of \mathbb{R}^n to a countable subcover.
- · Know the definition of compactness; in particular, know how to show that a set is or is not compact using this definition
- · Know the Heine-Borel Theorem and the theorem giving equivalent conditions for a subset of \mathbb{R}^n to be compact.

Metric Spaces

· Know the three metric properties and use them to show that a set with a distance function is indeed a metric space.

- · Know several examples of metric spaces. In particular, know several examples of different metrics on \mathbb{R}^n
- · Know which concepts from the topology of \mathbb{R}^n carry over to metric spaces
- · Know which theorems from \mathbb{R}^n are or are not true in general metric spaces.

SEQUENCES

- · Know the definition of convergence of a sequence in $\mathbb R$ and in a general metric space.
- · Be able to show that a sequence in a metric space does/does not converge.
- · Show that $x_n \to p$ in a metric space by showing that $d(x_n, p) \to 0$ in \mathbb{R} .
- \cdot Know various properties of convergent sequences in general metric spaces (e.g., are bounded, have unique limit)
- · Know various properties of convergent sequences in $\mathbb R$