Math 431 - Real Analysis I Solutions to Quest 1

Question 1. Below, you are given an open set S and a point $\mathbf{x} \in S$. Thus, by definition of openness, there exists an $\varepsilon>0$ such that

$$
B(\mathbf{x} ; \varepsilon) \subset S
$$

Your job is to do the following:
(i) Provide such an $\varepsilon>0$ that "works".
(ii) Show that your ε is actually positive.

Note: There is no need to prove that $B(\mathbf{x} ; \varepsilon) \subset S \ldots$ thatwouldtaketoolong!
(a) Let $x \in(-2,8)$ [the open interval from -2 to 8$]$. What is an $\varepsilon>0$ such that $B(x ; \varepsilon) \subset(-2,8)$?
(b) Let $(u, v) \in T$, where $T=\{(x, y) \mid x>0, y<0\}$ is the "open fourth quadrant" in \mathbb{R}^{2}. What is an $\varepsilon>0$ such that $B((u, v) ; \varepsilon) \subset T$?
(c) Let $(u, v) \in(0,1) \times(0,1)$ [the "unit open square" in $\left.\mathbb{R}^{2}\right]$. What is an $\varepsilon>0$ such that $B((u, v) ; \varepsilon) \subset$ $(0,1) \times(0,1)$?

Solution 1. Note: The answers given below are not unique; these solutions give merely one example of a correct ε.
(a) Let $\varepsilon=\min \{8-x, x+2\}$. Since $x \in(-2,8)$, then $-2<x<8$. Thus, $8-x>0$ and $x+2=x-(-2)>0$. Since both $8-x$ and $x+2$ are positive, their minimum is positive. So, $\varepsilon>0$.
(b) Let $\varepsilon=\min \{u,-v\}$. Since $(u, v) \in T$, then $u>0$ and $v<0$. Thus, $-v>0$. Thus, the minimum of u and $-v$ is also positive. So, $\varepsilon>0$.
(c) Let $\varepsilon=\min \{u, 1-u, v, 1-v\}$. Since $(u, v) \in(0,1) \times(0,1)$, we have that $0<u<1$ and $0<v<1$. Thus, $u>0,1-u>0, v>0$, and $1-v>0$. Since ε is the minimum of these four positive numbers, $\varepsilon>0$.

Question 2. Consider the set

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}
$$

which is geometrically the right half-space in \mathbb{R}^{2}. Also, consider the set

$$
T=\left\{(0, y) \in \mathbb{R}^{2} \mid y \in \mathbb{R}\right\}
$$

which is geometrically the y-axis in \mathbb{R}^{2}.
(a) Use the definition of an adherent point to show that any $(0, y) \in T$ is adherent to S.
(b) Use (a) and a theorem from class to show that S is not closed.

Solution 2.

(a) Let $(0, y) \in T$. Let $\varepsilon>0$. We will show that

$$
B((0, y) ; \varepsilon) \cap S \neq \varnothing
$$

Consider $(\varepsilon / 2, y)$. Note that

$$
\|(\varepsilon / 2, y)-(0, y)\|=\varepsilon / 2<\varepsilon
$$

Thus, $(\varepsilon / 2, y) \in B((0, y) ; \varepsilon)$. Also, since $\varepsilon / 2>0,(\varepsilon / 2, y) \in S$. So,

$$
B((0, y) ; \varepsilon) \cap S \neq \varnothing
$$

So, any $(0, y)$ is an adherent point.
(b) We proved that S is closed if and only if S contains all its adherent points. However, since every point in T is adherent to S and no point in T is in S, S does not contain all its adherent points. Thus, S is note closed.

Question 3. Let $S \subset \mathbb{R}$ be a non-empty, closed set that is bounded above.
(a) Show that $\sup S$ exists.
(b) Prove that $\sup S=\max S$ by showing that $\sup S \in S$. A proof by contradiction may be helpful.
(c) Conclude that every non-empty, closed set that is bounded above has a maximum.

Solution 3.

(a) S is a non-empty set that is bounded above. Thus, by the Completeness Axiom, $\sup S$ exists.
(b) By definition of $\sup S, x \leq \sup S$ for all $x \in S$. Next, we show that $\sup S \in S$. Assume, to the contrary, that $\sup S \notin S$. Thus, sup $S \in \bar{S}$, which is open since S is closed. Thus, $\sup S$ is interior to \bar{S}. So, there exists an $\varepsilon>0$ such that $B(x ; \varepsilon) \subset \bar{S}$. By the Approximation Theorem, there exists a $z \in S$ such that $\sup S-\varepsilon / 2<z \leq \sup S$. Thus, $z \in B(x ; \varepsilon) \subset \bar{S}$ and also $z \in S$, a contradiction. Thus, $\sup S \in S$. So, $\sup S=\max S$.

Question 4. [Extra Credit] Give a synonym for the following terms:
(a) Adherent Point
(b) Accumulation Point
(c) Bob Pelayo

Solution 4.

(a) Adherent Point $=$ Closure Point
(b) Accumulation Point $=$ Limit Point
(c) Bob Pelayo = ????

