
Math 431 - Real Analysis
Solutions to Homework due September 5

Question 1. Let a, b ∈ R.

(a) Show that if a+ b is rational, then a is rational or b is irrational.

(b) Use (a) to show that if a+ b is rational, then a and b are both rational or both irrational.

Solution 1.

(a) We will instead prove the contrapositive statement, which is “if a is irrational and b is rational, then
a+ b is irrational. Assume, to the contrary, that a+ b is rational. Then, since b is rational, we have that
−b is also rational. Since the sum or rational numbers is rational, we get that

a = (a+ b)− b ∈ Q.

This, of course contradicts that a is irrational. Since we have arrived at a contradiction, then our claim
that a + b is rational is false. Thus, a + b is irrational. Having proven the contrapositive, our original
statement “if a+ b is rational, then a is rational or b is irrational” is true.

(b) Assuming that a+ b is rational, (a) tells us that we have two cases: (1) a is rational or (2) b is irrational.
For the first case, we assume that a is rational. Thus −a ∈ Q and therefore

b = (a+ b)− a ∈ Q.

Therefore, b is irrational and therefore a and b are both rational. IN the second case we have that b is
irrational. We wish to show that a is also irrational. Assume, to the contrary, that a is rational. Then,
−a ∈ Q as well. Thus,

b = (a+ b)− a ∈ Q,

which, of course, contradicts that b is irrational. Thus, amust be irrational. So, a and b are irrational.

In class on Monday, we learned of boundedness, the supremum/infimum, and the Completeness Axiom.
Given a bounded set S ⊂ R, a number b is called a supremum or least upper bound for S if the following
hold:

(i) b is an upper bound for S, and

(ii) if c is an upper bound for S, then b ≤ c.

Similarly, given a bounded set S ⊂ R, a number b is called an infimum or greatest lower bound for S if the
following hold:

(i) b is a lower bound for S, and

(ii) if c is a lower bound for S, then c ≤ b.

If b is a supremum for S, we write that b = supS. If it is an infimum, we write that b = inf S.

We were also introduced to our tenth and final axiom, the Completeness Axiom. This axiom states that any
non-empty set S ⊂ R that is bounded above has a supremum; in other words, if S is a non-empty set of real
numbers that is bounded above, there exists a b ∈ R such that b = supS.

Question 2. Show that if a set S ⊂ R has a supremum, then it is unique. Thus, we can talk about the
supremum of a set, instead of the a supremum of a set.

1



Solution 2. Let S be a set and assume that b is a supremum for S To show equality, assume as well that
c is also a supremum for S and show that b = c. Since c is a supremum, it is an upper bound for S. Since
b is a supremum, then it is the least upper bound and thus b ≤ c. Similarly, since b is a supremum, it is an
upper bound for S; since c is a supremum, it is a least upper bound and therefore c ≤ b. Thus, c ≤ b and
b ≤ c, giving us that b = c. Thus, a supremum for a set is unique if it exists.

Question 3. Let S be a non-empty subset of R.

(a) Let −S = {−x ∈ R |x ∈ S}. Show that S has a supremum b if and only if −S has an infimum −b.

(b) Use (a) to show that if T is a non-empty set that is bounded below, then T has an infimum.

Solution 3.

(a) Assume that b = supS. Then, x ≤ b for all x ∈ S. Multiplying both sides by −1, we get that −b ≤ −x
for all x ∈ S. Thus, −b is a lower bound for the set S. Now, assume that c is another lower bound for
−S; we will show that c ≤ −b. If not, then −b < c. Multiplying by −1, this would give us that −c < b.
Notice that since c is a lower bound for −S, then c ≤ y for all y ∈ −S. Since y ∈ −S, then y = −x
where x ∈ S. So, we have taht c ≤ −x for all x ∈ S and therefore x < −c for all x ∈ S. So, −c is an
upper bound for S. Thus, −c is an upper bound for S and −c < b, contradicting that b is a supremum
for S.

The converse direction is an almost identical argument.

(b) Since T is bounded below, say by a, then a ≤ x for all x ∈ T . Multiplying by −1, we get that −x ≤ −a
for all x ∈ T . This is equivalence to y ≤ −a for all y ∈ −T . Thus, −T is non-empty and bounded above.
Thus, by the Completeness Axiom, −T has a supremum b. By (a), we have that −(−T ) = T has an
infimum −b, as desired.

Question 4. Prove the following Comparison Theorem: Let S, T ⊂ R be non-empty sets such that s ≤ t
for every s ∈ S and t ∈ T . If T has a supremum, then so does S and,

supS ≤ supT.

Solution 4. Let τ = supT . Since τ is a supremum for T , then t ≤ τ for all t ∈ T . Let s ∈ S and choose
any t ∈ T . Then, since s ≤ t and t ≤ τ , then s ≤ t. Thus, τ is an upper bound for S. By the Completeness
Axiom, S has a supremum, say σ = supS. We will show that σ ≤ τ . Notice that, by the above, τ is an
upper bound for S. Since σ is the least upper bound for S, then σ ≤ τ . Therefore,

supS ≤ supT.

Question 5. Consider the set

S =

{
1

n

∣∣∣∣n ∈ Z+

}
.

(a) Show that maxS = 1.
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(b) Show that if d is a lower bound for S, then d ≤ 0. [Hint: A proof by contradiction might be helpful, as
well as the Archimedean Property.]

(c) Use (b) to show that 0 = inf S.

Solution 5.

(a) Let x =
1

n
∈ S, where n ≥ 1. Since 1 ≤ n, we have that x =

1

n
≤ 1. Thus, fore very x ∈ S, x ≤ 1 and 1

is an upper bound. Notice as well that 1 =
1

1
∈ S. Thus, 1 = maxS.

(b) Let d be a lower bound for S. Thus, for every s ∈ S, d ≤ s. Assume, to the contrary, that d > 0. Using
the Archimedean property, we know that there exists an n ∈ Z+ such that 1 < dn. Since n > 0, this

gives us that
1

n
< d. But,

1

n
∈ S, and this contradicts the fact that d is a lower bound for S. Thus, we

must conclude that d ≤ 0.

(c) Clearly 0 is a lower bound for S since 0 ≤ 1

n
for all n ∈ Z+. If d is any other lower bound, then by (b),

d ≤ 0. Thus, 0 is greatest lower bound and so 0 = inf S.

Question 6. Consider the set

T =

{
(−1)n

(
1− 1

n

) ∣∣∣∣n ∈ Z+

}
.

(a) Show that 1 is an upper bound for T .

(b) Similar to 5b, show that if d is an upper bound for T , then d ≥ 1.

(c) Use (a) and (b) to show that supT = 1.

Solution 6.

(a) We will show that for any x ∈ T , x ≤ 1. Since x ∈ T , then x = (−1)n(1 − 1/n) for some n ∈ Z+.
Since 1

n > 0, then 1 − 1
n < 1. We argue our desired inequality in two cases. If n is even, then

x = (−1)n(1− 1/n) = 1− 1/n < 1. If n is odd, then x = (−1)n(1− 1/n) = 1− 1/n < 0 < 1. In either
case, x ≤ 1 (in fact, < 1) and 1 is an upper bound for T .

(b) Let d be an upper bound for T . Thus, (−1)n
(
1− 1

n

)
≤ d for all n ∈ Z+. Assume, to the contrary that

d < 1. Thus, 1− d > 0. By the Archimedean Property, there exists an n ∈ Z+ such that 1 < (1− d)n.
Since n > 0, we can re-write this as 1

n < 1− d, which is equivalent to

d < 1− 1

n
.

If n is even, then (−1)n = 1 and we have that

d < (−1)n
(

1− 1

n

)
∈ T,

contradicting the fact that d is an upper bound. If n is odd, then consider instead n+ 1, which is even.
Then, (−1)n+1 = 1 and

d < 1− 1

n
< (−1)n+1

(
1− 1

n+ 1

)
∈ T.

This again contradicts that d is an upper bound for T . Either way, we reach a contradiction and therefore
conclude that d ≥ 1.

(c) By (a), 1 is an upper bound for T . By (b), if d is any other upper bound, then 1 ≤ d. Thus, supT = 1.
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