## Math 431 - Real Analysis

Solutions to Homework due September 17
In class, we learned of the famous Cauchy-Schwarz Inequality. Given two $n$-vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the Cauchy-Schwarz inequality relates the dot product with the norms of the individual vectors:

$$
(\mathbf{x} \cdot \mathbf{y})^{2} \leq\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2}
$$

Written component-wise with

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)
$$

the Cauchy-Schwarz inequality is

$$
\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} x_{k}^{2}\right)\left(\sum_{k=1}^{n} y_{k}^{2}\right)
$$

Question 1. Many times, the Cauchy-Schwarz Inequality can be used to obtain some interesting inequalities by simply choosing an appropriate vector $\mathbf{x}$ and $\mathbf{y}$.
(a) Let $a, b, c \in \mathbb{R}$. Show that

$$
(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)
$$

(b) Let $a, b, c \in \mathbb{R}_{+}$. Show that

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9
$$

(c) Let $a_{1}, a_{2}, \cdots a_{n} \in \mathbb{R}$. Show the Sum of Squares inequality:

$$
\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2} \leq \frac{1}{n} \sum_{k=1}^{n} a_{k}^{2}
$$

## Solution 1.

(a) Consider the vectors $\mathbf{x}=(a, b, c)$ and $\mathbf{y}=(1,1,1)$. Using the Cauchy-Schwarz Inequality, we get that

$$
(a+b+c)^{2}=(1 \cdot a+1 \cdot b+1 \cdot c)^{2} \leq(1+1+1)\left(a^{2}+b^{2}+c^{2}\right)=3\left(a^{2}+b^{2}+c^{2}\right)
$$

(b) Consider the vectors

$$
\mathbf{x}=(\sqrt{a}, \sqrt{b}, \sqrt{c}) \quad \text { and } \mathbf{y}=\left(\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{b}}, \frac{1}{\sqrt{c}}\right)
$$

Using the Cauchy-Schwarz Inequality, we get that

$$
\begin{gathered}
9=(1+1+1)^{2}=\left(\sqrt{a} \cdot \frac{1}{\sqrt{a}}+\sqrt{b} \cdot \frac{1}{\sqrt{b}}+c \cdot \frac{1}{\sqrt{c}}\right)^{2} \leq \\
\left(\sqrt{a}^{2}+\sqrt{b}^{2}+\sqrt{c}^{2}\right)\left(\left(\frac{1}{\sqrt{a}}\right)^{2}+\left(\frac{1}{\sqrt{b}}\right)^{2}+\left(\frac{1}{\sqrt{c}}\right)^{2}\right)=(a+b+c)\left(\frac{1}{a}+\frac{1}{n}+\frac{1}{c}\right) .
\end{gathered}
$$

(c) Let $\mathbf{x}=(1 / n, 1 / n, \ldots 1 / n)$ and $\mathbf{y}=\left(a_{1}, a_{2}, \ldots a_{n}\right)$. Using the Cauchy-Schwarz inequality, we get that

$$
\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2}=\left(\sum_{k=1}^{n} \frac{1}{n} a_{k}\right)^{2} \leq\left(\sum_{k=1}^{n}\left(\frac{1}{n}\right)^{2}\right)\left(\sum_{k=1}^{n} a_{k}^{2}\right)=\frac{1}{n} \sum_{k=1}^{n} a_{k}^{2}
$$

Question 2. It is often easier to prove that a given set $S$ is not open. To do so, one needs to find a point $\mathbf{x} \in S$ such that for no $r>0, B(\mathbf{x} ; r) \subset S$. In other words, one needs to find a $\mathbf{x} \in S$ such that for all $r>0$, there exists some $y \in B(\mathbf{x} ; r)$ such that $y \in B(\mathbf{x} ; r)$ but $y \notin S$. Show that the following subsets $S \subset \mathbb{R}^{n}$ are not open.
(a) $\{a\} \subset \mathbb{R}$
(b) $\left\{(x, 0) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\} \subset \mathbb{R}^{2}$
(c) $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\} \subset \mathbb{R}^{2}$

## Solution 2.

(a) We will show that $a$ is not an interior point. Let $\varepsilon>0$. We will show that $B(a ; \varepsilon) \not \subset\{a\}$. Notice that $a+\varepsilon / 2 \in B(a ; \varepsilon)$ since

$$
|a+\varepsilon / 2-a|=\varepsilon / 2<\varepsilon
$$

Since $\{a\}$ contains only the element $a$, then $a+\varepsilon / 2 \notin\{a\}$. Thus, $B(a ; \varepsilon) \not \subset\{a\}$ and therefore $a$ is not an interior point. So, our set is not open.
(b) Let $S=\left\{(x, 0) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$ and consider $(0,0) \in S$, which we will show is not interior. Let $\varepsilon>0$; we will show that $B((0,0) ; \varepsilon) \not \subset S$. Notice that $(0, \varepsilon / 2) \in B((0,0) ; \varepsilon)$ since

$$
\|(0, \varepsilon / 2)-(0,0)\|=\varepsilon / 2<\varepsilon
$$

However, since $\varepsilon / 2 \neq 0$, then $(0,0) \notin S$. Thus, $B((0,0) ; \varepsilon) \not \subset S$. So, $(0,0)$ is non-interior and $S$ is not open. [Note: actually, any point in $S$ is non-interior.]
(c) Let $T=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$. We will show that $(0,0)$ is non-interior. Let $\varepsilon>0$; we will show that $B((0,0) ; \varepsilon) \not \subset T$. Notice that $(0,-\varepsilon / 2) \notin T$ because

$$
\|(0,-\varepsilon / 2)-(0,0)\|=\varepsilon / 2<\varepsilon
$$

However, since $-\varepsilon / 2<0,(0,-\varepsilon / 2) \notin T$. Thus, $(0,0)$ is not an interior point and $T$ is not open.

Question 3. In what follows, we will demonstrate an important topological property of $\mathbb{Q} \subset \mathbb{R}$.
(a) Let $a \in \mathbb{Q}$. Show that $a+\frac{\sqrt{2}}{n}$ is irrational for all $n \in \mathbb{Z}$.
(b) Use (a) to show that $\mathbb{Q}$ is not an open subset of $\mathbb{R}$.

## Solution 3.

(a) Assume, to the contrary, that $a+\sqrt{2} / n \in \mathbb{Q}$. Then, since $a \in \mathbb{Q}$, then $-a \in \mathbb{Q}$. So,

$$
\sqrt{2} / n=a+\sqrt{2} / n-a \in \mathbb{Q}
$$

Furthermore, since $n \in \mathbb{Q}$, then

$$
\sqrt{2}=n \cdot \frac{\sqrt{2}}{n} \in \mathbb{Q}
$$

However, it is known that $\sqrt{2} \notin \mathbb{Q}$, which is a contradiction. Thus, $a+\sqrt{2} / n \notin \mathbb{Q}$.
(b) We will show that 0 is not an interior point of $\mathbb{Q}$ (in fact, any $a \in \mathbb{Q}$ will not be interior). Let $\varepsilon>0$. We will show that $B(0, \varepsilon) \not \subset \mathbb{Q}$. Since $\varepsilon>0$, by the Archimedean Principle, there exists an $n \in \mathbb{Z}_{+}$such that $\sqrt{2}<\varepsilon n$. Thus,

$$
0<\frac{\sqrt{2}}{n}<\varepsilon
$$

By (a), we know that $\sqrt{2} / n \notin \mathbb{Q}$. However, $\sqrt{2} / n \in B(0 ; \varepsilon)$. Thus, $B(0 ; \varepsilon) \not \subset \mathbb{Q}$. So, 0 is not an interior point and $\mathbb{Q}$ is not open in $\mathbb{R}$.

Given a set $S \subset \mathbb{R}^{n}$, a point $\mathbf{x} \in \mathbb{S}$ is called an isolated point of $S$ if there exists an $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon) \cap S=\{x\}$. In other words, $\mathbf{x}$ is isolated in $S$ if there is a small enough $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon)$ intersects $S$ only at x itself. A set is called discrete if every point in $S$ is isolated.

Question 4. Show that the following sets are or are not discrete.
(a) Show that $\mathbb{Z}$ is a discrete subset of $\mathbb{R}$
(b) Show that ever finite subset of $\mathbb{R}$ is a discrete subset of $\mathbb{R}$.
(c) Show that $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}$is a discrete subset of $\mathbb{R}$
(d) Show that $T=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\} \cup\{0\}$ is not a discrete subset of $\mathbb{R}$.

## Solution 4.

(a) Let $n \in \mathbb{Z}$. We will show that $n$ is an isolated point of $\mathbb{Z}$. Let $\varepsilon=1 / 2$. Then, $B(n ; 1 / 2) \cap \mathbb{Z}=\{n\}$. Thus, $n$ is isolated and $\mathbb{Z}$ is discrete.
(b) Let $V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite subset of $\mathbb{R}$. Consider all the possible distances between every pair of points in $V$ and take the minimum. In other words, let $\varepsilon=\min \left\{\left|a_{i}-a_{j}\right| \mid a_{i} \neq a_{j} \in V\right\}$. Since there are only finitely many pairs of $a_{i}$ 's, a minimum exists. Furthermore, since each $\left|a_{i}-a_{j}\right|>0, \varepsilon>0$. We will now show that $a_{i}$ is an isolated point in $V$. Consider $B\left(a_{i} ; \varepsilon\right)$. Since $\varepsilon \leq\left|a_{i}-a_{j}\right|$ for every $a_{j} \neq a_{i}$, then the only element of $V$ that is distance less than $\varepsilon$ from $a_{i}$ is $a_{i}$ itself. Therefore, $B\left(a_{i} ; \varepsilon\right) \cap V=\left\{a_{i}\right\}$. Therefore, $a_{i}$ is an isolated point. Thus, every point is isolated and $V$ is discrete.
(c) We will show that every $1 / n \in S$ is an isolated point. Let

$$
\varepsilon=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}
$$

Since $n<n+1$, we know that $\varepsilon>0$. We will show that $B(1 / n ; \varepsilon) \cap S=\{1 / n\}$. Let $m \neq n$. We will show that $1 / m \notin B(1 / n ; \varepsilon)$. First, we take the case that $m>n$. Thus, $m \geq n+1$. So,

$$
\frac{1}{m} \leq \frac{1}{n+1}
$$

and thus

$$
\left|\frac{1}{n}-\frac{1}{m}\right|=\frac{1}{n}-\frac{1}{m} \geq \frac{1}{n}-\frac{1}{n+1}=\varepsilon
$$

Thus, $1 / m \notin B(1 / n ; \varepsilon)$. Next, consider the case where $m<n$. Thus, $m \leq n-1$ and so

$$
0<\frac{1}{n-1} \leq \frac{1}{m}
$$

Notice that since $n-1<n+1$, then $n(n-1)<n(n+1)$ and so

$$
\varepsilon=\frac{1}{n(n+1)}<\frac{1}{n(n-1)}
$$

Furthermore,

$$
\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}
$$

Thus, since

$$
\frac{1}{n-1} \leq \frac{1}{m}
$$

we know that

$$
\varepsilon=\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n} \leq \frac{1}{m}-\frac{1}{n}=\left\|\frac{1}{m}-\frac{1}{n}\right\|
$$

Thus, $1 / m \notin B(1 / n ; \varepsilon)$.
Thus, the only element of $S$ that is also in $B(1 / n ; \varepsilon)$ is $1 / n$ itself. So, $1 / n$ is isolated. Since every point is isolated, $S$ is discrete.
(d) We will show that 0 is not an isolated point. Let $\varepsilon>0$. By the Archimedean principle, there exists an $n \in \mathbb{Z}_{+}$such that $1<n \varepsilon$ and thus

$$
0<\frac{1}{n}<\varepsilon
$$

Thus, $\frac{1}{n} \in B(0 ; \varepsilon) \cap T$. So, it is not true that $B(0 ; \varepsilon) \cap T=\{0\}$. Thus, 0 is not isolated and therefore $T$ is not discrete.

Question 5. Let $U, V \in \mathbb{R}$ be open sets. Consider the product set

$$
U \times V=\{(x, y) \mid x \in U, y \in V\} \subset \mathbb{R}^{2}
$$

Show that $U \times V$ is open by showing that each $(x, y) \in U \times V$ is an interior point.
Solution 5. Let $(x, y) \in U \times V$. Thus, $x \in U$ and $y \in V$. We will show that $(x, y)$ is interior to $U \times V$. Since $U$ is open, there exists an $\varepsilon_{1}>0$ such that $B\left(x ; \varepsilon_{1}\right) \subset U$. Similarly, since $V$ is open, there exists an $\varepsilon_{2}>0$ such that $B\left(y ; \varepsilon_{2}\right) \subset V$. Since $B\left(x ; \varepsilon_{1}\right) \subset U$ and $B\left(y ; \varepsilon_{2}\right) \subset V$, then

$$
B\left(x ; \varepsilon_{1}\right) \times B\left(y ; \varepsilon_{2}\right) \subset U \times V
$$

Consider $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$; thus $\varepsilon \leq \varepsilon_{1}$ and $\varepsilon \leq \varepsilon_{2}$. We will show that $(x, y)$ is an interior point of $U \times V$ by showing that

$$
B((x, y) ; \varepsilon) \subset B\left(x ; \varepsilon_{1}\right) \times B\left(y ; \varepsilon_{2}\right) \subset U \times V
$$

Since the second inclusion is already established, we focus on the first inclusion. Let $(a, b) \in B((x, y) ; \varepsilon)$. Thus,

$$
\|(a, b)-(x, y)\|=\sqrt{(a-x)^{2}+(b-y)^{2}}<\varepsilon
$$

We wish to show that $(a, b) \in B\left(x ; \varepsilon_{1}\right) \times B\left(y ; \varepsilon_{2}\right)$ by showing that $|a-x|<\varepsilon_{1}$ and $|b-y|<\varepsilon_{2}$. Assume, to the contrary, that this is not true. Then, $|a-x| \geq \varepsilon_{1}$ or $|b-y| \geq \varepsilon_{2}$. If $|a-x| \geq \varepsilon_{1}$, then

$$
\|(a, b)-(x, y)\|=\sqrt{(a-x)^{2}+(b-y)^{2}} \geq \sqrt{(a-x)^{2}}=|a-x| \geq \varepsilon_{1} \geq \varepsilon
$$

This contradicts the fact that

$$
\|(a, b)-(x, y)\|<\varepsilon
$$

A similar computation gives the same contradiction for the case when $|b-y| \geq \varepsilon_{2}$. Thus, we conclude that $|a-x|<\varepsilon_{1}$ and $|b-y|<\varepsilon_{2}$. Thus,

$$
B((x, y) ; \varepsilon) \subset B\left(x ; \varepsilon_{1}\right) \times B\left(y ; \varepsilon_{2}\right) \subset U \times V
$$

So, $(x, y)$ is interior and $U \times V$ is open.

Question 6. Consider the set

$$
T=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|<1\right\}
$$

Geometrically, this set is just an "open disk" of radius 1 about the origin. Consider

$$
\mathbb{S}^{1}=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|=1\right\}
$$

Geometrically, $\mathbb{S}^{1}$ is the circle of radius 1 about the origin. We will show that every point in $\mathbb{S}^{1}$ is an accumulation point of $T$ (and therefore an adherent point of $T$ ).

As a hint, you may want to follow something similar to the below outline:
Let $\mathbf{x} \in \mathbb{S}^{1}$. We will show that for all $\varepsilon>0, B(\mathbf{x} ; \varepsilon) \cap(T-\{\mathbf{x}\}) \neq \varnothing$. First, note that $T-\{x\}=T$ since $\mathbf{x} \notin T$. Thus, we wish to show that $B(\mathbf{x} ; \varepsilon) \cap T \neq \varnothing$. Then, consider the 2 cases: $\varepsilon>1$ or $0<\varepsilon \leq 1$. In the last case, it might be wise to consider $\left(1-\frac{\varepsilon}{2}\right) \mathbf{x}$.

Solution 6. Let $\mathbf{x} \in \mathbb{S}^{1}$. Thus, $\|\mathbf{x}\|=1$. We will show that for all $\varepsilon>0, B(\mathbf{x} ; \varepsilon) \cap(T-\{\mathbf{x}\}) \neq \varnothing$. First, note that $T-\{x\}=T$ since $\mathbf{x} \notin T$. Thus, we wish to show that $B(\mathbf{x} ; \varepsilon) \cap T \neq \varnothing$. Then, consider the 2 cases: $\varepsilon>1$ or $0<\varepsilon \leq 1$.

If $\varepsilon>1$, consider the point $(0,0) \in T$. Notice that

$$
\|(0,0)-\mathbf{x}\|=\|\mathbf{x}\|=1<\varepsilon
$$

Thus, $(0,0) \in B(\mathbf{x} ; \varepsilon) \cap T$, which is thus non-empty.
If $0<\varepsilon \leq 1$. Consider the point $(1-\varepsilon / 2) \mathbf{x}$. Since $0<\varepsilon \leq 1$, then $0<\varepsilon / 2 \leq 1 / 2<1$. Thus, $0<1-\varepsilon / 2<1$.

Note that $(1-\varepsilon / 2) \mathbf{x} \in T$ since

$$
\|(1-\varepsilon / 2) \mathbf{x}\|=|1-\varepsilon / 2|\|\mathbf{x}\|=(1-\varepsilon / 2) \cdot 1=1-\varepsilon / 2<1
$$

Next, we will show that $(1-\varepsilon / 2) \mathbf{x} \in B(\mathbf{x} ; \varepsilon)$. To see this, note that

$$
\|(1-\varepsilon / 2) \mathbf{x}-\mathbf{x}\|=\|-\varepsilon / 2 \mathbf{x}\|=\varepsilon / 2\|\mathbf{x}\|=\varepsilon / 2<\varepsilon
$$

Thus, $(1-\varepsilon / 2) \mathbf{x} \in B(\mathbf{x} ; \varepsilon) \cap T$, which is thus non-empty. So, every $\mathbf{x} \in \mathbb{S}^{1}$ is an accumulation point (and thus an adherent point).

