
Math 431 - Real Analysis
Solutions to Homework due September 17

In class, we learned of the famous Cauchy-Schwarz Inequality. Given two n-vectors x,y ∈ Rn, the
Cauchy-Schwarz inequality relates the dot product with the norms of the individual vectors:

(x · y)
2 ≤ ‖x‖2 ‖y‖2.

Written component-wise with

x = (x1, x2, . . . , xn) and y = (y1, y2, · · · , yn),

the Cauchy-Schwarz inequality is (
n∑

k=1

xkyk

)2

≤

(
n∑

k=1

x2
k

) (
n∑

k=1

y2k

)
.

Question 1. Many times, the Cauchy-Schwarz Inequality can be used to obtain some interesting inequalities
by simply choosing an appropriate vector x and y.

(a) Let a, b, c ∈ R. Show that
(a + b + c)2 ≤ 3(a2 + b2 + c2).

(b) Let a, b, c ∈ R+. Show that

(a + b + c)

(
1

a
+

1

b
+

1

c

)
≥ 9.

(c) Let a1, a2, · · · an ∈ R. Show the Sum of Squares inequality:(
1

n

n∑
k=1

ak

)2

≤ 1

n

n∑
k=1

a2k.

Solution 1.

(a) Consider the vectors x = (a, b, c) and y = (1, 1, 1). Using the Cauchy-Schwarz Inequality, we get that

(a + b + c)2 = (1 · a + 1 · b + 1 · c)2 ≤ (1 + 1 + 1)(a2 + b2 + c2) = 3(a2 + b2 + c2).

(b) Consider the vectors

x =
(√

a,
√
b,
√
c
)

and y =

(
1√
a
,

1√
b
,

1√
c

)
.

Using the Cauchy-Schwarz Inequality, we get that

9 = (1 + 1 + 1)2 =

(√
a · 1√

a
+
√
b · 1√

b
+ c · 1√

c

)2

≤

(√
a
2

+
√
b
2

+
√
c
2
)(( 1√

a

)2

+

(
1√
b

)2

+

(
1√
c

)2
)

= (a + b + c)

(
1

a
+

1

n
+

1

c

)
.

(c) Let x = (1/n, 1/n, . . . 1/n) and y = (a1, a2, . . . an). Using the Cauchy-Schwarz inequality, we get that(
1

n

n∑
k=1

ak

)2

=

(
n∑

k=1

1

n
ak

)2

≤

(
n∑

k=1

(
1

n

)2
)(

n∑
k=1

a2k

)
=

1

n

n∑
k=1

a2k.
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Question 2. It is often easier to prove that a given set S is not open. To do so, one needs to find a point
x ∈ S such that for no r > 0, B(x; r) ⊂ S. In other words, one needs to find a x ∈ S such that for all r > 0,
there exists some y ∈ B(x; r) such that y ∈ B(x; r) but y 6∈ S. Show that the following subsets S ⊂ Rn are
not open.

(a) {a} ⊂ R

(b) {(x, 0) ∈ R2 |x ∈ R} ⊂ R2

(c) {(x, y) ∈ R2 |x ≥ 0 and y ≥ 0} ⊂ R2

Solution 2.

(a) We will show that a is not an interior point. Let ε > 0. We will show that B(a; ε) 6⊂ {a}. Notice that
a + ε/2 ∈ B(a; ε) since

|a + ε/2− a| = ε/2 < ε.

Since {a} contains only the element a, then a + ε/2 6∈ {a}. Thus, B(a; ε) 6⊂ {a} and therefore a is not
an interior point. So, our set is not open.

(b) Let S = {(x, 0) ∈ R2 |x ∈ R} and consider (0, 0) ∈ S, which we will show is not interior. Let ε > 0; we
will show that B((0, 0); ε) 6⊂ S. Notice that (0, ε/2) ∈ B((0, 0); ε) since

‖(0, ε/2)− (0, 0)‖ = ε/2 < ε.

However, since ε/2 6= 0, then (0, 0) 6∈ S. Thus, B((0, 0); ε) 6⊂ S. So, (0, 0) is non-interior and S is not
open. [Note: actually, any point in S is non-interior.]

(c) Let T = {(x, y) ∈ R2 |x ≥ 0 and y ≥ 0}. We will show that (0, 0) is non-interior. Let ε > 0; we will
show that B((0, 0); ε) 6⊂ T . Notice that (0,−ε/2) 6∈ T because

‖(0,−ε/2)− (0, 0)‖ = ε/2 < ε.

However, since −ε/2 < 0, (0,−ε/2) 6∈ T . Thus, (0, 0) is not an interior point and T is not open.

Question 3. In what follows, we will demonstrate an important topological property of Q ⊂ R.

(a) Let a ∈ Q. Show that a +
√
2

n is irrational for all n ∈ Z.

(b) Use (a) to show that Q is not an open subset of R.

Solution 3.

(a) Assume, to the contrary, that a +
√

2/n ∈ Q. Then, since a ∈ Q, then −a ∈ Q. So,

√
2/n = a +

√
2/n− a ∈ Q.

Furthermore, since n ∈ Q, then
√

2 = n ·
√

2

n
∈ Q.

However, it is known that
√

2 6∈ Q, which is a contradiction. Thus, a +
√

2/n 6∈ Q.
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(b) We will show that 0 is not an interior point of Q (in fact, any a ∈ Q will not be interior). Let ε > 0.
We will show that B(0, ε) 6⊂ Q. Since ε > 0, by the Archimedean Principle, there exists an n ∈ Z+ such
that

√
2 < εn. Thus,

0 <

√
2

n
< ε.

By (a), we know that
√

2/n 6∈ Q. However,
√

2/n ∈ B(0; ε). Thus, B(0; ε) 6⊂ Q. So, 0 is not an interior
point and Q is not open in R.

Given a set S ⊂ Rn, a point x ∈ S is called an isolated point of S if there exists an ε > 0 such that
B(x; ε) ∩ S = {x}. In other words, x is isolated in S if there is a small enough ε > 0 such that B(x; ε)
intersects S only at x itself. A set is called discrete if every point in S is isolated.

Question 4. Show that the following sets are or are not discrete.

(a) Show that Z is a discrete subset of R

(b) Show that ever finite subset of R is a discrete subset of R.

(c) Show that S =
{

1
n

∣∣n ∈ Z+

}
is a discrete subset of R

(d) Show that T =
{

1
n

∣∣n ∈ Z+

}
∪ {0} is not a discrete subset of R.

Solution 4.

(a) Let n ∈ Z. We will show that n is an isolated point of Z. Let ε = 1/2. Then, B(n; 1/2) ∩ Z = {n}.
Thus, n is isolated and Z is discrete.

(b) Let V = {a1, a2, . . . , an} be a finite subset of R. Consider all the possible distances between every pair
of points in V and take the minimum. In other words, let ε = min{|ai − aj | | ai 6= aj ∈ V }. Since there
are only finitely many pairs of ai’s, a minimum exists. Furthermore, since each |ai − aj | > 0, ε > 0. We
will now show that ai is an isolated point in V . Consider B(ai; ε). Since ε ≤ |ai − aj | for every aj 6= ai,
then the only element of V that is distance less than ε from ai is ai itself. Therefore, B(ai; ε)∩V = {ai}.
Therefore, ai is an isolated point. Thus, every point is isolated and V is discrete.

(c) We will show that every 1/n ∈ S is an isolated point. Let

ε =
1

n
− 1

n + 1
=

1

n(n + 1)
.

Since n < n + 1, we know that ε > 0. We will show that B(1/n; ε) ∩ S = {1/n}. Let m 6= n. We will
show that 1/m 6∈ B(1/n; ε). First, we take the case that m > n. Thus, m ≥ n + 1. So,

1

m
≤ 1

n + 1

and thus ∣∣∣∣ 1n − 1

m

∣∣∣∣ =
1

n
− 1

m
≥ 1

n
− 1

n + 1
= ε.

Thus, 1/m 6∈ B(1/n; ε). Next, consider the case where m < n. Thus, m ≤ n− 1 and so

0 <
1

n− 1
≤ 1

m
.
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Notice that since n− 1 < n + 1, then n(n− 1) < n(n + 1) and so

ε =
1

n(n + 1)
<

1

n(n− 1)
.

Furthermore,
1

n(n− 1)
=

1

n− 1
− 1

n
.

Thus, since
1

n− 1
≤ 1

m
,

we know that

ε =
1

n(n− 1)
=

1

n− 1
− 1

n
≤ 1

m
− 1

n
=

∥∥∥∥ 1

m
− 1

n

∥∥∥∥ .
Thus, 1/m 6∈ B(1/n; ε).

Thus, the only element of S that is also in B(1/n; ε) is 1/n itself. So, 1/n is isolated. Since every point
is isolated, S is discrete.

(d) We will show that 0 is not an isolated point. Let ε > 0. By the Archimedean principle, there exists an
n ∈ Z+ such that 1 < nε and thus

0 <
1

n
< ε.

Thus, 1
n ∈ B(0; ε) ∩ T . So, it is not true that B(0; ε) ∩ T = {0}. Thus, 0 is not isolated and therefore T

is not discrete.

Question 5. Let U, V ∈ R be open sets. Consider the product set

U × V = {(x, y) |x ∈ U, y ∈ V } ⊂ R2.

Show that U × V is open by showing that each (x, y) ∈ U × V is an interior point.

Solution 5. Let (x, y) ∈ U × V . Thus, x ∈ U and y ∈ V . We will show that (x, y) is interior to U × V .
Since U is open, there exists an ε1 > 0 such that B(x; ε1) ⊂ U . Similarly, since V is open, there exists an
ε2 > 0 such that B(y; ε2) ⊂ V . Since B(x; ε1) ⊂ U and B(y; ε2) ⊂ V , then

B(x; ε1)×B(y; ε2) ⊂ U × V.

Consider ε = min{ε1, ε2}; thus ε ≤ ε1 and ε ≤ ε2. We will show that (x, y) is an interior point of U × V by
showing that

B((x, y); ε) ⊂ B(x; ε1)×B(y; ε2) ⊂ U × V.

Since the second inclusion is already established, we focus on the first inclusion. Let (a, b) ∈ B((x, y); ε).
Thus,

‖(a, b)− (x, y)‖ =
√

(a− x)2 + (b− y)2 < ε.

We wish to show that (a, b) ∈ B(x; ε1)×B(y; ε2) by showing that |a− x| < ε1 and |b− y| < ε2. Assume, to
the contrary, that this is not true. Then, |a− x| ≥ ε1 or |b− y| ≥ ε2. If |a− x| ≥ ε1, then

‖(a, b)− (x, y)‖ =
√

(a− x)2 + (b− y)2 ≥
√

(a− x)2 = |a− x| ≥ ε1 ≥ ε.

This contradicts the fact that
‖(a, b)− (x, y)‖ < ε.
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A similar computation gives the same contradiction for the case when |b− y| ≥ ε2. Thus, we conclude that
|a− x| < ε1 and |b− y| < ε2. Thus,

B((x, y); ε) ⊂ B(x; ε1)×B(y; ε2) ⊂ U × V.

So, (x, y) is interior and U × V is open.

Question 6. Consider the set
T = {x ∈ R2 | ‖x‖ < 1}.

Geometrically, this set is just an “open disk” of radius 1 about the origin. Consider

S1 = {x ∈ R2 | ‖x‖ = 1}.

Geometrically, S1 is the circle of radius 1 about the origin. We will show that every point in S1 is an
accumulation point of T (and therefore an adherent point of T ).

As a hint, you may want to follow something similar to the below outline:

Let x ∈ S1. We will show that for all ε > 0, B(x; ε)∩ (T − {x}) 6= ∅. First, note that T − {x} = T since
x 6∈ T . Thus, we wish to show that B(x; ε) ∩ T 6= ∅. Then, consider the 2 cases: ε > 1 or 0 < ε ≤ 1. In the

last case, it might be wise to consider
(

1− ε

2

)
x.

Solution 6. Let x ∈ S1. Thus, ‖x‖ = 1. We will show that for all ε > 0, B(x; ε) ∩ (T − {x}) 6= ∅. First,
note that T −{x} = T since x 6∈ T . Thus, we wish to show that B(x; ε)∩T 6= ∅. Then, consider the 2 cases:
ε > 1 or 0 < ε ≤ 1.

If ε > 1, consider the point (0, 0) ∈ T . Notice that

‖(0, 0)− x‖ = ‖x‖ = 1 < ε.

Thus, (0, 0) ∈ B(x; ε) ∩ T, which is thus non-empty.
If 0 < ε ≤ 1. Consider the point (1 − ε/2)x. Since 0 < ε ≤ 1, then 0 < ε/2 ≤ 1/2 < 1. Thus,

0 < 1− ε/2 < 1.
Note that (1− ε/2)x ∈ T since

‖(1− ε/2)x‖ = |1− ε/2| ‖x‖ = (1− ε/2) · 1 = 1− ε/2 < 1.

Next, we will show that (1− ε/2)x ∈ B(x; ε). To see this, note that

‖(1− ε/2)x− x‖ = ‖ − ε/2x‖ = ε/2 ‖x‖ = ε/2 < ε.

Thus, (1− ε/2)x ∈ B(x; ε)∩T, which is thus non-empty. So, every x ∈ S1 is an accumulation point (and
thus an adherent point).
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