MATH 431 - REAL ANALYSIS
SOLUTIONS TO HOMEWORK DUE SEPTEMBER 17

In class, we learned of the famous Cauchy-Schwarz Inequality. Given two n-vectors x,y € R", the
Cauchy-Schwarz inequality relates the dot product with the norms of the individual vectors:

2
(x-y)” < [x[*ly]I*.
Written component-wise with

X = ($1,$2,-.-,$n) and y= (y17y27"' 7yn)7

(En) <) ()

Question 1. Many times, the Cauchy-Schwarz Inequality can be used to obtain some interesting inequalities
by simply choosing an appropriate vector x and y.

the Cauchy-Schwarz inequality is

(a) Let a,b,c € R. Show that
(a+b+c)* <3(a®+b* +c?).
(b) Let a,b,c € Ry. Show that
1 1 1
(a+b+c¢) <++) >9.
a b ¢

(¢) Let ay,as, - -a, € R. Show the Sum of Squares inequality:
n 2 n
(13a) <134
n ~n ke
k=1 k=1

Solution 1.
(a) Consider the vectors x = (a,b,c¢) and y = (1,1, 1). Using the Cauchy-Schwarz Inequality, we get that

(a+b+e)?=0-a+1-b+1-¢><(14+14+1)(a®+b*+) =3 +b* +A).

O
(b) Consider the vectors
x:(\/a\/l;ﬁ) and y = N .
) ) \/a? b7 c
Using the Cauchy-Schwarz Inequality, we get that
Va Vb ve) ©
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O

(¢) Let x=(1/n,1/n,...1/n) and y = (a1, az, . ..ay). Using the Cauchy-Schwarz inequality, we get that

(L5 (52 <(E0) )15



Question 2. It is often easier to prove that a given set S is not open. To do so, one needs to find a point
x € S such that for no r > 0, B(x;r) C S. In other words, one needs to find a x € S such that for all r > 0,
there exists some y € B(x;r) such that y € B(x;r) but y € S. Show that the following subsets S C R™ are
not open.

(a) {a} CR
(b) {(x,0) € R?|x € R} C R?
(c) {(z,y) eR?|z>0and y >0} C R?

Solution 2.

(a) We will show that a is not an interior point. Let ¢ > 0. We will show that B(a;e) ¢ {a}. Notice that
a+¢/2 € Bla;e) since
la+e/2—al=¢/2 <e.

Since {a} contains only the element a, then a +¢/2 ¢ {a}. Thus, B(a;e) ¢ {a} and therefore a is not
an interior point. So, our set is not open. O

(b) Let S = {(x,0) € R? |z € R} and consider (0,0) € S, which we will show is not interior. Let ¢ > 0; we
will show that B((0,0);e) ¢ S. Notice that (0,£/2) € B((0,0);¢) since

100,6/2) = (0,0) = ¢/2 <.

However, since €/2 # 0, then (0,0) ¢ S. Thus, B((0,0);¢) ¢ S. So, (0,0) is non-interior and S is not
open. [Note: actually, any point in S is non-interior.) O

(c) Let T = {(z,y) € R?|z > 0 and y > 0}. We will show that (0,0) is non-interior. Let ¢ > 0; we will
show that B((0,0);e) ¢ T. Notice that (0,—¢/2) ¢ T because

100, —¢/2) = (0,0)[| = ¢/2 <e.

However, since —¢/2 < 0, (0,—¢/2) ¢ T. Thus, (0,0) is not an interior point and T is not open. O

Question 3. In what follows, we will demonstrate an important topological property of Q C R.

(a) Let a € Q. Show that a + % is irrational for all n € Z.

(b) Use (a) to show that Q is not an open subset of R.

Solution 3.
(a) Assume, to the contrary, that a +1/2/n € Q. Then, since a € Q, then —a € Q. So,
V2/n=a+V2/n—-acqQ.
Furthermore, since n € Q, then
.

=n-— Q.
n

However, it is known that v/2 ¢ Q, which is a contradiction. Thus, a + \/i/n ¢ Q.



(b)

We will show that 0 is not an interior point of Q (in fact, any a € Q will not be interior). Let ¢ > 0.
We will show that B(0,¢) ¢ Q. Since € > 0, by the Archimedean Principle, there exists an n € Z, such
that v/2 < en. Thus,

V2

0< —<e.
n

By (a), we know that v/2/n € Q. However, v/2/n € B(0;¢). Thus, B(0;¢) ¢ Q. So, 0 is not an interior
point and Q is not open in R. O

Given a set S C R”, a point x € S is called an isolated point of S if there exists an € > 0 such that
B(x;e) NS = {z}. In other words, x is isolated in S if there is a small enough £ > 0 such that B(x;¢)
intersects S only at x itself. A set is called discrete if every point in S is isolated.

Question 4. Show that the following sets are or are not discrete.

(a
(b
(c

)
)
)
(d)

Show that Z is a discrete subset of R
Show that ever finite subset of R is a discrete subset of R.
Show that S = { % | n e Z+} is a discrete subset of R

Show that T = {  |n € Z; } U{0} is not a discrete subset of R.

Solution 4.

(a)

(b)

Let n € Z. We will show that n is an isolated point of Z. Let ¢ = 1/2. Then, B(n;1/2) NZ = {n}.
Thus, n is isolated and Z is discrete. O

Let V = {a1,as,...,a,} be a finite subset of R. Counsider all the possible distances between every pair
of points in V' and take the minimum. In other words, let ¢ = min{|a; — a;||a; # a; € V'}. Since there
are only finitely many pairs of a;’s, a minimum exists. Furthermore, since each |a; —a;| > 0, ¢ > 0. We
will now show that a; is an isolated point in V. Consider B(a;;¢). Since € < |a; — a;| for every a; # a;,
then the only element of V' that is distance less than € from a; is a; itself. Therefore, B(a;;e)NV = {a;}.
Therefore, a; is an isolated point. Thus, every point is isolated and V is discrete. O

We will show that every 1/n € S is an isolated point. Let

1 1 1
£ = — — = .
n n+l nn+1)

Since n < n + 1, we know that ¢ > 0. We will show that B(1/n;e) NS = {1/n}. Let m # n. We will
show that 1/m & B(1/n;e). First, we take the case that m > n. Thus, m > n + 1. So,

1 1
— <
m - n+1
and thus
1 1] 1 1>1 1
n m| n m~-_n n+l




Notice that since n — 1 < n + 1, then n(n — 1) < n(n+ 1) and so

1 1
n(n+1) < n(n—1)"

Furthermore,

Thus, since

we know that
1 1 1
E = = _—
nn—1) n—-1 n

Thus, 1/m ¢ B(1/n;¢).
Thus, the only element of S that is also in B(1/n;¢) is 1/n itself. So, 1/n is isolated. Since every point
is isolated, S is discrete.
(d) We will show that 0 is not an isolated point. Let € > 0. By the Archimedean principle, there exists an

n € Z4 such that 1 < ne and thus

1

0<—<e.
n

Thus, % € B(0;e)NT. So, it is not true that B(0;e) NT = {0}. Thus, 0 is not isolated and therefore T'
is not discrete.

Question 5. Let U,V € R be open sets. Consider the product set
UxV={(z,y)|zeUyecV}cCR
Show that U x V is open by showing that each (x,y) € U x V is an interior point.

Solution 5. Let (x,y) € U x V. Thus, z € U and y € V. We will show that (z,y) is interior to U x V.
Since U is open, there exists an 1 > 0 such that B(z;e1) C U. Similarly, since V' is open, there exists an
€2 > 0 such that B(y;e2) C V. Since B(z;e1) C U and B(y;e2) C V, then

B(x;e1) x B(y;ea) CU x V.

Consider ¢ = min{ey, ea}; thus e < e and € < 5. We will show that (x,y) is an interior point of U x V by
showing that
B((#,y);¢) C B(w;e1) x By;e2) U x V.

Since the second inclusion is already established, we focus on the first inclusion. Let (a,b) € B((z,y);¢).

Thus,
I(a,0) = (2, 9)| = V(a —2)? + (b —y)? <e.

We wish to show that (a,b) € B(z;e1) x B(y;e2) by showing that |a — x| < &1 and |b— y| < 2. Assume, to
the contrary, that this is not true. Then, |a — x| > &1 or [b —y| > €2. If |a — x| > €1, then

I(a,0) = ()| =V(a—a)? + by > V(a—a)?=la—a| > e 2=

This contradicts the fact that
||(a’, b) - (SC,y)“ <E.



A similar computation gives the same contradiction for the case when |b — y| > e5. Thus, we conclude that
la — x| < e; and |b — y| < e3. Thus,

B((z,y);e) C B(z;e1) X B(y;e2) CU x V.

So, (z,y) is interior and U x V' is open.

Question 6. Consider the set
T={xeR?||x] <1}.

Geometrically, this set is just an “open disk” of radius 1 about the origin. Consider
St = {x e R?||Ix|| = 1}.

Geometrically, S' is the circle of radius 1 about the origin. We will show that every point in S' is an
accumulation point of 7' (and therefore an adherent point of T').

As a hint, you may want to follow something similar to the below outline:

Let x € S'. We will show that for all € > 0, B(x;e) N (T — {x}) # @. First, note that T'— {x} = T since
x ¢ T. Thus, we wish to show that B(x;¢) NT # &. Then, consider the 2 cases: € > 1 or 0 < e < 1. In the

€
last case, it might be wise to consider (1 — 5) X.

Solution 6. Let x € S'. Thus, ||x|| = 1. We will show that for all £ > 0, B(x;e) N (T — {x}) # &. First,
note that T'— {z} = T since x ¢ T.. Thus, we wish to show that B(x;e) NT # &. Then, consider the 2 cases:
e>lor0<e<1.

If € > 1, consider the point (0,0) € T. Notice that

100,0) =x[| = [Ix[| =1 <e.
Thus, (0,0) € B(x;e) N T, which is thus non-empty.
If 0 < e < 1. Consider the point (1 —&/2)x. Since 0 < ¢ < 1, then 0 < ¢/2 < 1/2 < 1. Thus,

0<l-g/2<1
Note that (1 —e/2)x € T since

l(1—e/2)x|]|=1—¢/2||x]|=(1—¢/2)-1=1—¢/2 < 1.
Next, we will show that (1 — /2)x € B(x;¢). To see this, note that
11 —e/2)x —x|| = || —e/2x|| = &/2||x|| = ¢/2 < e.

Thus, (1 —&/2)x € B(x;e)NT, which is thus non-empty. So, every x € S* is an accumulation point (and
thus an adherent point).



