
Math 431 - Real Analysis I
Homework due October 8

Question 1. Recall that any set M can be given the discrete metric dd given by

dd(x, y) =

{
1 if x 6= y
0 if x = y

For the below, let M be any set with the discrete metric.

(a) Show that any subset S of M is an open set.

(b) Use (a) to show that any subset of M is closed.

(c) Show that any subset S of M is discrete (hence the name ‘discrete metric’).

(d) Show that a subset S of M is compact if and only if it is finite.

Solution 1.

(a) Let S ⊂ M and let x ∈ S. We will show that x is interior to S. Consider ε = 1/2. Notice that for all
points y 6= x, dd(x, y) = 1 > 1/2. Thus,

B(x; 1/2) = {x}.

Thus,
{x} = B(x; 1/2) ⊂ S.

Thus, x is interior to S. Since this is true for all x ∈ S, S is open.

(b) Consider the complement S. By (a), every subset of is open; thus, S is open. So, S is closed.

(c) Let x ∈ S. We will show that x is isolated. As above, consider ε = 1/2. As noted in (a), B(x; 1/2) = {x}.
Thus, x is isolated and S is discrete.

(d) This proof is identical to the one from last week’s HW. See those solutions. In particular, one can just
choose the open cover to be F = {{x} |x ∈ S}. Since every set is open, {x} is open, so this is an open
cover for S.

Question 2. Use the ε−N definition of the convergence of a sequence to show that following sequences
converge to the indicated limits. Unless otherwise stated, all sequences are valid for n ≥ 1.

(a)
1

n2
→ 0

(b)
2√
n

+ 1→ 1

(c) e−n → 0

Solution 2.
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(a) Given ε > 0, let N = 1/
√
ε. For all n > N = 1/

√
ε, we have that

1√
ε
< n.

Squaring both sides preserves the inequality and we get

1

ε
< n2.

Since n2, ε > 0, we can cross divide to get
1

n2
< ε.

Since 1/n2 > 0, this is equivalent to ∣∣∣∣ 1

n2
− 0

∣∣∣∣ < ε.

Thus, 1/n2 → 0.

(b) Given ε > 0, let N = 4/ε2. For all n > N = 4/ε2, we have that

4

ε2
< n.

Taking the square root of both sides preserves the inequality. Thus, we have that

2

ε
<
√
n.

Since ε,
√
n > 0, we can cross-divide to obtain

2√
n
< ε.

Since 4/ε2 > 0, this is equivalent to ∣∣∣∣ 2√
n

∣∣∣∣ < ε.

Adding and subtracting 1 on the inside of the absolute values, we get∣∣∣∣( 2√
n

+ 1

)
− 1

∣∣∣∣ < ε.

Thus, 2/
√
n + 1→ 1.

(c) Given ε > 0, let N = ln(1/ε). Then, for all n > N = ln(1/ε), we have

ln(1/ε) < n.

Exponentiating both sides preserves the inequality and we get that

eln(1/ε) < en,

which is equivalent to
1

ε
< en.

Since ε, en > 0, we can cross-divide to get that

e−n =
1

en
< ε.

Since e−n > 0, this is equivalent to ∣∣e−n − 0
∣∣ < ε.

Thus, e−n → 0.
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Question 3. In what follows, let M be a metric space with metric d.

(a) A sequence {xn} in a metric space is called eventually constant if there exists some N such that for all
n > N , xn = p for some p ∈M . Show that any eventually constant sequence converges.

(b) Let k ∈ R and let {xn} be a real sequence. Show that if xn → a, then the sequence {k · xn} converges
to k · a.

Solution 3.

(a) Let ε > 0. Since xn is eventually constant, there exists some N such that for all n > N , xn = p. Thus,
for this N , we have that for all n > N , d(xn, p) = d(p, p) = 0 < ε. Thus, xn → p.

(b) We will prove our proposition using 2 cases: if k = 0 or if k 6= 0. If k = 0, then k ·xn = 0 is the constant
0 sequence. Thus, it converges to 0 = k · a, as desired.

Next, we assume that k 6= 0. Given ε > 0, since xn → a, there exists an N such that for all n > N ,
|xn − a| < ε/|k|. So, for all n > N ,

|k · xn − k · a| = |k(xn − a)| = |k| · |xn − a| < ε.

So k · xn → k · a.

Question 4. In this question, we will investigate specific examples of convergence in the metric space

C([0, 1]) = {f : [0, 1]→ R | f is continuous} .

In other words, C([0, 1]) is the set of all continuous real-valued functions whose domain is [0, 1]. We will
consider C([0, 1]) with its L1 metric given by

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx.

Below, you will be given a sequence of these functions. You should

(i) Draw/graph these functions for n = 2, 3, 5, and 10.

(ii) Show that fn converges to the indicated function.

(a) Let {fn} be the sequence given by fn(x) = xn. Show that fn converges to the constant 0 function.

(b) Let {fn} be the sequence given by

fn(x) =

{
nx if 0 ≤ x ≤ 1/n
1 if 1/n < x ≤ 1

Show that fn converges to the constant function 1.

Solution 4.
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(a) We will show that xn → 0 by showing that d(xn, 0)→ 0. Since xn ≥ 0 on [0, 1], we have that |xn−0| = xn.
Thus, computing the distance, we get

d(xn, 0) =

∫ 1

0

|xn − 0| dx =

∫ 1

0

xn =
1

n + 1
xn+1

∣∣∣∣1
0

=
1

n + 1
.

Notice that

0 ≤ 1

n + 1
≤ 1

n
.

Since 0→ 0 and 1/n→ 0, by the Squeeze Theorem, we have that

d(xn, 0) =
1

n + 1
→ 0.

Thus, xn → 0.

(b) We will show that fn → 1 by showing that d(fn, 1) → 0. Since 1 ≥ fn(x) on [0, 1], we knwo that
|1− fn(x)| = 1− fn(x). Thus, computing the distance, we have∫ 1

0

|1− fn(x)| dx =

∫ 1

0

1− fn(x) dx =

∫ 1/n

0

1− nx dx +

∫ 1

1/n

1− 1 dx =

x− n

2
x2
∣∣∣1/n
0

=
1

n
− n

2
· 1

n2
=

1

n
− 1

2n
=

1

2n
.

Since 1/n→ 0, then 1
2n →

1
2 ·

1
n →

1
2 · 0 = 0. Thus, d(1, fn)→ 0 and so fn → 1.

Question 5. In Question 3a, we showed that in any metric space, every eventually constant sequence
converges. In this question, we will show that in a metric space with the discrete metric, the converse is
true. In other words, let M be a metric space with the discrete metric dd (defined in Question 1). Show
that if xn converges, then {xn} is eventually constant.

Solution 5. Assume xn → p. Then, there exists some N such that for all n > N , dd(xn, p) < 1/2. In this
discrete metric dd, this means that dd(xn, p) = 0 and thus xn = p. Thus, for all n > N , xn = p; so xn is
eventually constant.

Question 6. Let {xn} be a real sequence. We will show that xn → 0 if and only if |xn| → 0.

(a) Show that
−|xn| ≤ xn ≤ |xn|

for all n.

(b) Use (a) to show that |xn| → 0, then xn → 0.

(c) Use an ε−N proof to show that if xn → 0, then |xn| → 0.

(d) Conclude that xn → 0 if and only if |xn| → 0.

Solution 6.
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(a) Note that trivially |xn| ≤ |xn|. Thus, using properties of the absolute value, we have that

−|xn| ≤ xn ≤ |xn|.

(b) If |xn| → 0, then −|xn| = −1 · |xn| → −1 · 0 = 0. Since −|xn| ≤ xn ≤ |xn|, by the Squeeze Theorem we
have that xn → 0.

(c) Let ε > 0. Since xn → 0, there exists some N such that for all n > N , |xn − 0| < ε. This is equivalent
to |xn| < ε. This, of course, is also equivalent to ||xn| − 0| < ε. Thus, for all n > N , ||xn| − 0| < ε. So,
|xn| → 0.

(d) Summarizing the above, by (b) we know that if |xn| → 0, then xn → 0. By (c), we know that if xn → 0,
then |xn| → 0. Thus, |xn| → 0 if and only if xn → 0.
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