MATH 431 - REAL ANALYSIS [
HOMEWORK DUE OCTOBER 8

Question 1. Recall that any set M can be given the discrete metric dy given by

1 if x

For the below, let M be any set with the discrete metric.

(a) Show that any subset S of M is an open set.

(b) Use (a) to show that any subset of M is closed.

(¢) Show that any subset S of M is discrete (hence the name ‘discrete metric’).
)

(d) Show that a subset S of M is compact if and only if it is finite.

Solution 1.

(a) Let S C M and let z € S. We will show that z is interior to S. Consider € = 1/2. Notice that for all
points y # z, dg(x,y) =1 > 1/2. Thus,

B(x;1/2) = {z}.

Thus,
{z} = B(xz;1/2) C S.

Thus, z is interior to S. Since this is true for all z € S, S is open.
(b) Consider the complement S. By (a), every subset of is open; thus, S is open. So, S is closed.

(c) Let z € S. We will show that z is isolated. As above, consider € = 1/2. Asnoted in (a), B(z;1/2) = {z}.
Thus, z is isolated and S is discrete.

(d) This proof is identical to the one from last week’s HW. See those solutions. In particular, one can just
choose the open cover to be F = {{z} |z € S}. Since every set is open, {z} is open, so this is an open
cover for S.

Question 2. Use the e — N definition of the convergence of a sequence to show that following sequences
converge to the indicated limits. Unless otherwise stated, all sequences are valid for n > 1.

(b) %+1%1

(¢c) e™—=0

Solution 2.



(a)

Given € > 0, let N =1/y/e. For all n > N = 1/4/¢, we have that

1
— < n.

NG

Squaring both sides preserves the inequality and we get

1 <n?
€
Since n?,e > 0, we can cross divide to get
[
Since 1/n? > 0, this is equivalent to
‘7112 - O‘ <e.

Thus, 1/n? — 0.
Given € > 0, let N = 4/e% For all n > N = 4/£2, we have that

4<
— <n.
e2

Taking the square root of both sides preserves the inequality. Thus, we have that
2
o< Vn.

Since €, /n > 0, we can cross-divide to obtain

Since 4/&2 > 0, this is equivalent to
2

vn

Adding and subtracting 1 on the inside of the absolute values, we get

(0o

<eE.

Thus, 2/y/n+1 — 1.

Given € > 0, let N =1In(1/e). Then, for all n > N =In(1/¢), we have
In(1/e) < n.

Exponentiating both sides preserves the inequality and we get that

eln(l/e) < el

)

which is equivalent to

1
- <em
€
Since €,e™ > 0, we can cross-divide to get that
1
e"=—<e.
en
Since e™™ > 0, this is equivalent to
‘e_” — O‘ <e.

Thus, e — 0.



Question 3. In what follows, let M be a metric space with metric d.

(a) A sequence {z,} in a metric space is called eventually constant if there exists some N such that for all
n > N, x, = p for some p € M. Show that any eventually constant sequence converges.

(b) Let k € R and let {z,} be a real sequence. Show that if z,, — a, then the sequence {k - x,,} converges
to k- a.

Solution 3.

(a) Let € > 0. Since x, is eventually constant, there exists some N such that for all n > N, x,, = p. Thus,
for this N, we have that for all n > N, d(z,,p) = d(p,p) = 0 < e. Thus, z,, — p.

(b) We will prove our proposition using 2 cases: if k =0 or if k # 0. If kK = 0, then k- xz,, = 0 is the constant
0 sequence. Thus, it converges to 0 = k - a, as desired.

Next, we assume that k # 0. Given € > 0, since z,, — a, there exists an N such that for all n > N,
|z, —a| < e/|k|. So, for all n > N,

k-2 —k-a| = k(zy, —a)| = k| |zn —a] <e.

Sok-x, —k-a.

Question 4. In this question, we will investigate specific examples of convergence in the metric space
C([0,1]) ={f:[0,1] = R| f is continuous}.

In other words, C([0,1]) is the set of all continuous real-valued functions whose domain is [0,1]. We will
consider C([0,1]) with its L' metric given by

1
A1.9)= [ 17(e) - gla)] da.
0
Below, you will be given a sequence of these functions. You should

(i) Draw/graph these functions for n = 2, 3,5, and 10.

(ii) Show that f,, converges to the indicated function.

(a) Let {f.} be the sequence given by f,(z) = ™. Show that f, converges to the constant 0 function.
(b) Let {f.} be the sequence given by

[ nz f0<z<1/n
f"(x)_{ 1 ifln<az<l1

Show that f, converges to the constant function 1.

Solution 4.



(a) We will show that 2™ — 0 by showing that d(«™,0) — 0. Since ™ > 0 on [0, 1], we have that |z, —0] = z™.
Thus, computing the distance, we get

! ! 1 ! 1
d(a:",O):/ |x"—0|dx:/ " = "t = .
0 0 n+1 o N+l
Notice that
1 1
0< < —.
“n+1"n

Since 0 — 0 and 1/n — 0, by the Squeeze Theorem, we have that

1
n+1

d(z",0) = — 0.

Thus, 2™ — 0.

(b) We will show that f, — 1 by showing that d(f,,1) — 0. Since 1 > f,(z) on [0,1], we knwo that
|1 — fn(2)] =1 — fn(x). Thus, computing the distance, we have

1 1 1/n 1
/ |1—fn(ac)|dac:/ l—fn(x)dacz/ l—n:vdx—f—/ 1—1dx =
0 0 0 1/n

n 2‘1/”_1 n 1 1 1 1

r— =X

2
— 3-0=0. Thus, d(1, f,) — 0 and so f, — 1.

o Tn 2w n

Since 1/n — 0, then 5~ — % -

1
n

Question 5. In Question 3a, we showed that in any metric space, every eventually constant sequence
converges. In this question, we will show that in a metric space with the discrete metric, the converse is
true. In other words, let M be a metric space with the discrete metric dg (defined in Question 1). Show
that if x,, converges, then {z,} is eventually constant.

Solution 5. Assume x,, — p. Then, there exists some N such that for all n > N, d4(x,,p) < 1/2. In this
discrete metric dg, this means that dq(x,,p) = 0 and thus x,, = p. Thus, for all n > N, z,, = p; so z,, is
eventually constant.

Question 6. Let {x,} be a real sequence. We will show that x,, — 0 if and only if |x,| — 0.

(a) Show that

for all n.
(b) Use (a) to show that |z, | — 0, then x,, — 0.
(c) Use an e—N proof to show that if z,, — 0, then |z,| — 0.

(d) Conclude that x,, — 0 if and only if |z, | — 0.

Solution 6.



Note that trivially |z, | < |z,|. Thus, using properties of the absolute value, we have that

If |z,| — 0, then —|z,| = -1 |z,| = —1-0=0. Since —|z,| < 2, < |z,|, by the Squeeze Theorem we
have that x,, — 0.

Let € > 0. Since z,, — 0, there exists some N such that for all n > N, |z, — 0| < e. This is equivalent
to |x,| < e. This, of course, is also equivalent to ||z, | — 0] < e. Thus, for all n > N, ||z,| — 0] < e. So,
|z, | — 0.

Summarizing the above, by (b) we know that if |z,| — 0, then z,, — 0. By (c), we know that if z,, — 0,
then |z,| — 0. Thus, |z,| — 0 if and only if z,, — 0.



