Math 431 - Real Analysis I Homework due October 8

Question 1. Recall that any set M can be given the discrete metric d_{d} given by

$$
d_{d}(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

For the below, let M be any set with the discrete metric.
(a) Show that any subset S of M is an open set.
(b) Use (a) to show that any subset of M is closed.
(c) Show that any subset S of M is discrete (hence the name 'discrete metric').
(d) Show that a subset S of M is compact if and only if it is finite.

Solution 1.

(a) Let $S \subset M$ and let $x \in S$. We will show that x is interior to S. Consider $\varepsilon=1 / 2$. Notice that for all points $y \neq x, d_{d}(x, y)=1>1 / 2$. Thus,

$$
B(x ; 1 / 2)=\{x\}
$$

Thus,

$$
\{x\}=B(x ; 1 / 2) \subset S
$$

Thus, x is interior to S. Since this is true for all $x \in S, S$ is open.
(b) Consider the complement \bar{S}. By (a), every subset of is open; thus, \bar{S} is open. So, S is closed.
(c) Let $x \in S$. We will show that x is isolated. As above, consider $\varepsilon=1 / 2$. As noted in (a), $B(x ; 1 / 2)=\{x\}$. Thus, x is isolated and S is discrete.
(d) This proof is identical to the one from last week's HW. See those solutions. In particular, one can just choose the open cover to be $\mathcal{F}=\{\{x\} \mid x \in S\}$. Since every set is open, $\{x\}$ is open, so this is an open cover for S.

Question 2. Use the $\varepsilon-N$ definition of the convergence of a sequence to show that following sequences converge to the indicated limits. Unless otherwise stated, all sequences are valid for $n \geq 1$.
(a) $\frac{1}{n^{2}} \rightarrow 0$
(b) $\frac{2}{\sqrt{n}}+1 \rightarrow 1$
(c) $e^{-n} \rightarrow 0$

Solution 2.

(a) Given $\varepsilon>0$, let $N=1 / \sqrt{\varepsilon}$. For all $n>N=1 / \sqrt{\varepsilon}$, we have that

$$
\frac{1}{\sqrt{\varepsilon}}<n
$$

Squaring both sides preserves the inequality and we get

$$
\frac{1}{\varepsilon}<n^{2}
$$

Since $n^{2}, \varepsilon>0$, we can cross divide to get

$$
\frac{1}{n^{2}}<\varepsilon
$$

Since $1 / n^{2}>0$, this is equivalent to

$$
\left|\frac{1}{n^{2}}-0\right|<\varepsilon
$$

Thus, $1 / n^{2} \rightarrow 0$.
(b) Given $\varepsilon>0$, let $N=4 / \varepsilon^{2}$. For all $n>N=4 / \varepsilon^{2}$, we have that

$$
\frac{4}{\varepsilon^{2}}<n
$$

Taking the square root of both sides preserves the inequality. Thus, we have that

$$
\frac{2}{\varepsilon}<\sqrt{n}
$$

Since $\varepsilon, \sqrt{n}>0$, we can cross-divide to obtain

$$
\frac{2}{\sqrt{n}}<\varepsilon
$$

Since $4 / \varepsilon^{2}>0$, this is equivalent to

$$
\left|\frac{2}{\sqrt{n}}\right|<\varepsilon
$$

Adding and subtracting 1 on the inside of the absolute values, we get

$$
\left|\left(\frac{2}{\sqrt{n}}+1\right)-1\right|<\varepsilon
$$

Thus, $2 / \sqrt{n}+1 \rightarrow 1$.
(c) Given $\varepsilon>0$, let $N=\ln (1 / \varepsilon)$. Then, for all $n>N=\ln (1 / \varepsilon)$, we have

$$
\ln (1 / \varepsilon)<n
$$

Exponentiating both sides preserves the inequality and we get that

$$
e^{\ln (1 / \varepsilon)}<e^{n}
$$

which is equivalent to

$$
\frac{1}{\varepsilon}<e^{n}
$$

Since $\varepsilon, e^{n}>0$, we can cross-divide to get that

$$
e^{-n}=\frac{1}{e^{n}}<\varepsilon
$$

Since $e^{-n}>0$, this is equivalent to

$$
\left|e^{-n}-0\right|<\varepsilon
$$

Thus, $e^{-n} \rightarrow 0$.

Question 3. In what follows, let M be a metric space with metric d.
(a) A sequence $\left\{x_{n}\right\}$ in a metric space is called eventually constant if there exists some N such that for all $n>N, x_{n}=p$ for some $p \in M$. Show that any eventually constant sequence converges.
(b) Let $k \in \mathbb{R}$ and let $\left\{x_{n}\right\}$ be a real sequence. Show that if $x_{n} \rightarrow a$, then the sequence $\left\{k \cdot x_{n}\right\}$ converges to $k \cdot a$.

Solution 3.

(a) Let $\varepsilon>0$. Since x_{n} is eventually constant, there exists some N such that for all $n>N, x_{n}=p$. Thus, for this N, we have that for all $n>N, d\left(x_{n}, p\right)=d(p, p)=0<\varepsilon$. Thus, $x_{n} \rightarrow p$.
(b) We will prove our proposition using 2 cases: if $k=0$ or if $k \neq 0$. If $k=0$, then $k \cdot x_{n}=0$ is the constant 0 sequence. Thus, it converges to $0=k \cdot a$, as desired.
Next, we assume that $k \neq 0$. Given $\varepsilon>0$, since $x_{n} \rightarrow a$, there exists an N such that for all $n>N$, $\left|x_{n}-a\right|<\varepsilon /|k|$. So, for all $n>N$,

$$
\left|k \cdot x_{n}-k \cdot a\right|=\left|k\left(x_{n}-a\right)\right|=|k| \cdot\left|x_{n}-a\right|<\varepsilon .
$$

So $k \cdot x_{n} \rightarrow k \cdot a$.

Question 4. In this question, we will investigate specific examples of convergence in the metric space

$$
C([0,1])=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

In other words, $C([0,1])$ is the set of all continuous real-valued functions whose domain is $[0,1]$. We will consider $C([0,1])$ with its L^{1} metric given by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Below, you will be given a sequence of these functions. You should
(i) Draw/graph these functions for $n=2,3,5$, and 10 .
(ii) Show that f_{n} converges to the indicated function.
(a) Let $\left\{f_{n}\right\}$ be the sequence given by $f_{n}(x)=x^{n}$. Show that f_{n} converges to the constant 0 function.
(b) Let $\left\{f_{n}\right\}$ be the sequence given by

$$
f_{n}(x)=\left\{\begin{array}{cl}
n x & \text { if } 0 \leq x \leq 1 / n \\
1 & \text { if } 1 / n<x \leq 1
\end{array}\right.
$$

Show that f_{n} converges to the constant function 1 .

Solution 4.

(a) We will show that $x^{n} \rightarrow 0$ by showing that $d\left(x^{n}, 0\right) \rightarrow 0$. Since $x^{n} \geq 0$ on $[0,1]$, we have that $\left|x_{n}-0\right|=x^{n}$. Thus, computing the distance, we get

$$
d\left(x^{n}, 0\right)=\int_{0}^{1}\left|x^{n}-0\right| d x=\int_{0}^{1} x^{n}=\left.\frac{1}{n+1} x^{n+1}\right|_{0} ^{1}=\frac{1}{n+1}
$$

Notice that

$$
0 \leq \frac{1}{n+1} \leq \frac{1}{n}
$$

Since $0 \rightarrow 0$ and $1 / n \rightarrow 0$, by the Squeeze Theorem, we have that

$$
d\left(x^{n}, 0\right)=\frac{1}{n+1} \rightarrow 0
$$

Thus, $x^{n} \rightarrow 0$.
(b) We will show that $f_{n} \rightarrow 1$ by showing that $d\left(f_{n}, 1\right) \rightarrow 0$. Since $1 \geq f_{n}(x)$ on $[0,1]$, we knwo that $\left|1-f_{n}(x)\right|=1-f_{n}(x)$. Thus, computing the distance, we have

$$
\begin{gathered}
\int_{0}^{1}\left|1-f_{n}(x)\right| d x=\int_{0}^{1} 1-f_{n}(x) d x=\int_{0}^{1 / n} 1-n x d x+\int_{1 / n}^{1} 1-1 d x= \\
x-\left.\frac{n}{2} x^{2}\right|_{0} ^{1 / n}=\frac{1}{n}-\frac{n}{2} \cdot \frac{1}{n^{2}}=\frac{1}{n}-\frac{1}{2 n}=\frac{1}{2 n}
\end{gathered}
$$

Since $1 / n \rightarrow 0$, then $\frac{1}{2 n} \rightarrow \frac{1}{2} \cdot \frac{1}{n} \rightarrow \frac{1}{2} \cdot 0=0$. Thus, $d\left(1, f_{n}\right) \rightarrow 0$ and so $f_{n} \rightarrow 1$.

Question 5. In Question 3a, we showed that in any metric space, every eventually constant sequence converges. In this question, we will show that in a metric space with the discrete metric, the converse is true. In other words, let M be a metric space with the discrete metric d_{d} (defined in Question 1). Show that if x_{n} converges, then $\left\{x_{n}\right\}$ is eventually constant.

Solution 5. Assume $x_{n} \rightarrow p$. Then, there exists some N such that for all $n>N, d_{d}\left(x_{n}, p\right)<1 / 2$. In this discrete metric d_{d}, this means that $d_{d}\left(x_{n}, p\right)=0$ and thus $x_{n}=p$. Thus, for all $n>N, x_{n}=p$; so x_{n} is eventually constant.

Question 6. Let $\left\{x_{n}\right\}$ be a real sequence. We will show that $x_{n} \rightarrow 0$ if and only if $\left|x_{n}\right| \rightarrow 0$.
(a) Show that

$$
-\left|x_{n}\right| \leq x_{n} \leq\left|x_{n}\right|
$$

for all n.
(b) Use (a) to show that $\left|x_{n}\right| \rightarrow 0$, then $x_{n} \rightarrow 0$.
(c) Use an $\varepsilon-N$ proof to show that if $x_{n} \rightarrow 0$, then $\left|x_{n}\right| \rightarrow 0$.
(d) Conclude that $x_{n} \rightarrow 0$ if and only if $\left|x_{n}\right| \rightarrow 0$.

Solution 6.

(a) Note that trivially $\left|x_{n}\right| \leq\left|x_{n}\right|$. Thus, using properties of the absolute value, we have that

$$
-\left|x_{n}\right| \leq x_{n} \leq\left|x_{n}\right|
$$

(b) If $\left|x_{n}\right| \rightarrow 0$, then $-\left|x_{n}\right|=-1 \cdot\left|x_{n}\right| \rightarrow-1 \cdot 0=0$. Since $-\left|x_{n}\right| \leq x_{n} \leq\left|x_{n}\right|$, by the Squeeze Theorem we have that $x_{n} \rightarrow 0$.
(c) Let $\varepsilon>0$. Since $x_{n} \rightarrow 0$, there exists some N such that for all $n>N,\left|x_{n}-0\right|<\varepsilon$. This is equivalent to $\left|x_{n}\right|<\varepsilon$. This, of course, is also equivalent to $\left|\left|x_{n}\right|-0\right|<\varepsilon$. Thus, for all $n>N,\left|\left|x_{n}\right|-0\right|<\varepsilon$. So, $\left|x_{n}\right| \rightarrow 0$.
(d) Summarizing the above, by (b) we know that if $\left|x_{n}\right| \rightarrow 0$, then $x_{n} \rightarrow 0$. By (c), we know that if $x_{n} \rightarrow 0$, then $\left|x_{n}\right| \rightarrow 0$. Thus, $\left|x_{n}\right| \rightarrow 0$ if and only if $x_{n} \rightarrow 0$.

