Math 431 - Real Analysis I Homework due October 31

In class, we learned that a function $f: S \rightarrow T$ between metric spaces $\left(S, d_{S}\right)$ and $\left(T, d_{T}\right)$ is continuous if and only if the pre-image of every open set in T is open in S. In other words, f is continuous if for all open $U \subset T$, the pre-image $f^{-1}(U) \subset S$ is open in S.

Question 1. Let S, T, and R be metric spaces and let $f: S \rightarrow T$ and $g: T \rightarrow R$. We can define the composition function $g \circ f: S \rightarrow R$ by

$$
g \circ f(s)=g(f(s))
$$

(a) Let $U \subset R$. Show that $(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$
(b) Use (a) to show that if f and g are continuous, then the composition $g \circ f$ is also continuous

Solution 1.

(a) We will show that $(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$ by showing that $(g \circ f)^{-1}(U) \subset f^{-1}\left(g^{-1}(U)\right)$ and $f^{-1}\left(g^{-1}(U)\right) \subset(g \circ f)^{-1}(U)$. For the first direction, let $x \in(g \circ f)^{-1}(U)$. Then, $g \circ f(x) \in U$. Thus, $g(f(x)) \in U$. Since $g(f(x)) \in U$, then $f(x) \in g^{-1}(U)$. Continuing we get that $x \in f^{-1}\left(g^{-1}(U)\right.$. Thus, $(g \circ f)^{-1}(U) \subset f^{-1}\left(g^{-1}(U)\right)$.
Conversely, assume that $x \in f^{-1}\left(g^{-1}(U)\right)$. Then, $f(x) \in g^{-1}(U)$. Furthermore, $g(f(x)) \in U$. Thus, $g \circ f(x) \in U$. So, $x \in(g \circ f)^{-1}(U)$. So, $f^{-1}\left(g^{-1}(U)\right) \subset(g \circ f)^{-1}(U)$.
Thus, $(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$.
(b) Let U be open in R. Since g is continuous, then $g^{-1}(U) \subset T$ is open. Since f is continuous, $f^{-1}\left(g^{-1}(U)\right)$ is open. Thus, by (a), $(g \circ f)^{-1}(U)$ is open. So, $g \circ f$ is continuous.

Question 2. Let $\left(S, d_{S}\right)$ and $\left(T, d_{T}\right)$ be metric spaces and let $f: S \rightarrow T$.
(a) A function is called constant if $f(s)=t_{0}$ for all $s \in S$. Show that any constant function is continuous.
(b) Show that if d_{S} is the discrete metric, then any function f is continuous.

Solution 2.

(a) Let U be an open set in T. We will show that $f^{-1}(U)$ is open. We do so in two cases: $t_{0} \in U$ and $t_{0} \notin U$. If $t_{0} \in U$, then since $f(s)=t_{0}$ for all $s \in S, f^{-1}(U)=S$, which is always open in S. If $t_{0} \notin U$, then $f^{-1}(U)=\varnothing$, which is open. In either case, the pre-image of every open set is open. So the constant function f is continuous.
(b) Recall that in a discrete metric space, every subset is open. Thus, given any open $U \subset T, f^{-1}(U) \subset S$ is automatically open. Thus, f is continuous.

Question 3. The floor function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=\lfloor x\rfloor$, where $\lfloor x\rfloor x$ is the largest integer less than or equal to x.
(a) Let $a \notin \mathbb{Z}$. Use an $\varepsilon-\delta$ proof to show that $f(x)=\lfloor x\rfloor$ is continuous at a.
(b) Let $a \in \mathbb{Z}$. Show that $f(x)=\lfloor x\rfloor$ is not continuous at a. To do so, find an $\varepsilon>0$ such that for any $\delta>0$, there exists an x with $|x-a|<\delta$ such that $|f(x)-f(a)| \geq \varepsilon$.

Solution 3.

(a) Let $a \notin \mathbb{Z}$. Given $\varepsilon>0$, let $\delta=\min \{a-\lfloor a\rfloor,\lfloor a+1\rfloor-a\}$. Since $a \notin \mathbb{Z}$, then $a \neq\lfloor a\rfloor$ and $\lfloor a+1\rfloor \neq a$. Tus, $\delta>0$. Notice that for all x satisfying $|x-a|<\delta$, we have that $f(x)=\lfloor x\rfloor=\lfloor a\rfloor$. Thus, $|f(x)-f(a)|=|f(a)-f(a)|=0<\varepsilon$. Thus, f is continuous at a.
(b) Let $a \in \mathbb{Z}$. Then, $f(a)=\lfloor a\rfloor=a$. Let $\varepsilon=1 / 2$. Let $\delta>0$ and consider $a-\delta / 2$. Since $a \in \mathbb{Z}$, then $f(a-\delta / 2)<a$. In particular, since f only takes on integral values, $f(a)-f(a-\delta / 2) \geq 1$. Thus,

$$
|f(a-\delta / 2)-f(a)| \geq 1>\varepsilon .
$$

Thus, f is discontinuous at a.

Question 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
(a) Assume that $f(x) \geq 0$ for all $x \in[0,1]$. Show that if $f(c)>0$ for some $c \in(0,1)$, then

$$
\int_{0}^{1} f(x) d x>0 .
$$

(b) Show that the above is no longer true if the term "continuous" is dropped. That is, given an example of a (necessarily discontinuous) function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \geq 0$ and $f(c)>0$ for some $c \in(0,1)$, yet

$$
\int_{0}^{1} f(x) d x=0 .
$$

Solution 4.

(a) Since f is continuous, there exists a $\delta>0$ such that whenever $|x-a|<\delta$, then $|f(x)-f(c)|<f(c) / 2$. Thus, for x satisfying $|x-c|<\delta$ (which is equivalent to $-\delta<x-c<\delta$, we have that

$$
-\frac{f(c)}{2}<f(x)-f(c)<\frac{f(c)}{2} .
$$

Using the first inequality and adding $f(c)$ to both sides, we get that

$$
\frac{f(c)}{2}<f(x)
$$

for all x satisfying $-\delta<x-c<\delta$. Since this last pair of inequalities is equivalent to $c-\delta<x<c+\delta$, for these x, we have that $\frac{f(c)}{2}<f(x)$. Thus,

$$
0<\frac{f(c)}{2} \cdot 2 \delta=\int_{c-\delta}^{c+\delta} \frac{f(c)}{2} d x \leq \int_{c-\delta}^{c+\delta} f(x) d x \leq \int_{0}^{1} f(x) d x .
$$

(b) Consider the piecewise function given by

$$
f(x)= \begin{cases}0 & \text { if } x \neq 1 / 2 \\ 1 & \text { if } x=1 / 2\end{cases}
$$

Then $f(x) \geq 0$ and $f(1 / 2)>0$, but $\int_{0}^{1} f(x)=0$.

Question 5. Recall that we can equip $C([0,1])$, the space of all continuous functions on $[0,1]$, with its L^{1} metric, which is given by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Consider the function $\varphi: C([0,1]) \rightarrow \mathbb{R}$ given by

$$
\varphi(f)=\int_{0}^{1} f(x) d x
$$

In this question, we will show that φ is a continuous function.
(a) Show that

$$
\left|\int_{0}^{1} h(x) d x\right| \leq \int_{0}^{1}|h(x)| d x
$$

Hint: We previously proved that $-|a| \leq a \leq|a|$ for all $a \in \mathbb{R}$.
(b) Use the above to give an $\varepsilon-\delta$ proof that φ is continuous.

Solution 5.

(a) Notice that for all $x,-|h(x)| \leq h(x) \leq|h(x)|$. Integrating each side, we get that

$$
-\int_{0}^{1}|h(x)| d x \leq \int_{0}^{1} h(x) d x \leq \int_{0}^{1}|h(x)| d x
$$

This is equivalent to

$$
\left|\int_{0}^{1} h(x) d x\right| \leq \int_{0}^{1}|h(x)| d x
$$

(b) We will show that φ is continuous at any $f \in C([0,1])$. Given $\varepsilon>0$, let $\delta=\varepsilon>0$. Then, for all $g \in C([0,1])$ satisfying

$$
\int_{0}^{1}|g(x)-f(x)| d x<\delta=\varepsilon
$$

we can use the above fact to get that

$$
\begin{gathered}
|\varphi(g)-\varphi(f)|=\left|\int_{0}^{1} g(x) d x-\int_{0}^{1} f(x) d x\right|=\left|\int_{0}^{1} g(x)-f(x) d x\right| \leq \\
\int_{0}^{1}|g(x)-f(x)| d x<\varepsilon
\end{gathered}
$$

Thus, $|\varphi(g)-\varphi(f)|<\varepsilon$, as desired. So, φ is continuous at any $f \in C([0,1])$ and thus φ is a continuous function.

Question 7. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

We will show that f is continuous only at $a=0$.
(a) Use an $\varepsilon-\delta$ proof to show that $f(x)$ is continuous at $a=0$.
(b) Use the theorem relating convergent sequences to continuous functions to show that if $a \neq 0$, then $f(x)$ is not continuous at a.

Solution 7.

(a) Given $\varepsilon>0$, let $\delta=\varepsilon$. We will show that for any x satisfying $|x-0|<\delta$, then $|f(x)-f(0)|<\varepsilon$. So, let x satisfy $|x|=|x-0|<\delta=\varepsilon$. We take two cases: $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$. If $x \in \mathbb{Q}$, then $f(x)=x$. Thus,

$$
|f(x)-f(0)|=|x-0|<\varepsilon=\delta
$$

In the second case, if $x \notin \mathbb{Q}$, then $f(x)=0$, so $|f(x)-f(0)|=|0-0|<\varepsilon$. In either case, we have that if $|x-0|<\delta$, then $|f(x)-f(0)|<\varepsilon$. Thus, f is continuous at $a=0$.
(b) Let $a \neq 0$. We will consider the two cases: $a \in \mathbb{Q}$ or $a \notin \mathbb{Q}$. If $a \in \mathbb{Q}$, then, let x_{n} be a sequence of irrational numbers converging to a. If f were continuous at a, then $f\left(x_{n}\right) \rightarrow f(a)$. However, for all n, $f\left(x_{n}\right)=0$, which converges to 0 . However, since $a \in \mathbb{Q}, f(a)=a \neq 0$. Thus, $f\left(x_{n}\right) \nrightarrow f(a)$. So, f is discontinuous at a. For the second case, assume that $a \notin \mathbb{Q}$. Then, there exists a sequence of rational numbers x_{n} such that $x_{n} \rightarrow a$. If f were continuous at a, then $f\left(x_{n}\right) \rightarrow f(a)$. But $f\left(x_{n}\right)=x_{n}$ since $x_{n} \in \mathbb{Q}$. Thus, $f\left(x_{n}\right)=x_{n} \rightarrow a$. However, since $a \notin \mathbb{Q}, f(a)=0 \neq a$. Thus, $f\left(x_{n}\right) \nrightarrow f(a)$. So, f is discontinuous at a. So, at any $a \neq 0, f$ is discontinuous at a.

