
Math 431 - Real Analysis I
Homework due October 31

In class, we learned that a function f : S → T between metric spaces (S, dS) and (T, dT ) is continuous if
and only if the pre-image of every open set in T is open in S. In other words, f is continuous if for all open
U ⊂ T , the pre-image f−1(U) ⊂ S is open in S.

Question 1. Let S, T , and R be metric spaces and let f : S → T and g : T → R. We can define the
composition function g ◦ f : S → R by

g ◦ f(s) = g(f(s)).

(a) Let U ⊂ R. Show that (g ◦ f)−1(U) = f−1
(
g−1 (U)

)
(b) Use (a) to show that if f and g are continuous, then the composition g ◦ f is also continuous

Solution 1.

(a) We will show that (g ◦ f)−1(U) = f−1
(
g−1 (U)

)
by showing that (g ◦ f)−1(U) ⊂ f−1

(
g−1 (U)

)
and

f−1
(
g−1 (U)

)
⊂ (g ◦ f)−1(U). For the first direction, let x ∈ (g ◦ f)−1(U). Then, g ◦ f(x) ∈ U . Thus,

g(f(x)) ∈ U . Since g(f(x)) ∈ U , then f(x) ∈ g−1(U). Continuing we get that x ∈ f−1(g−1(U). Thus,
(g ◦ f)−1(U) ⊂ f−1

(
g−1 (U)

)
.

Conversely, assume that x ∈ f−1
(
g−1 (U)

)
. Then, f(x) ∈ g−1(U). Furthermore, g(f(x)) ∈ U . Thus,

g ◦ f(x) ∈ U . So, x ∈ (g ◦ f)−1(U). So, f−1
(
g−1 (U)

)
⊂ (g ◦ f)−1(U).

Thus, (g ◦ f)−1(U) = f−1
(
g−1 (U)

)
.

(b) Let U be open in R. Since g is continuous, then g−1(U) ⊂ T is open. Since f is continuous, f−1(g−1(U))
is open. Thus, by (a), (g ◦ f)−1(U) is open. So, g ◦ f is continuous.

Question 2. Let (S, dS) and (T, dT ) be metric spaces and let f : S → T .

(a) A function is called constant if f(s) = t0 for all s ∈ S. Show that any constant function is continuous.

(b) Show that if dS is the discrete metric, then any function f is continuous.

Solution 2.

(a) Let U be an open set in T . We will show that f−1(U) is open. We do so in two cases: t0 ∈ U and t0 6∈ U .
If t0 ∈ U , then since f(s) = t0 for all s ∈ S, f−1(U) = S, which is always open in S. If t0 6∈ U , then
f−1(U) = ∅, which is open. In either case, the pre-image of every open set is open. So the constant
function f is continuous.

(b) Recall that in a discrete metric space, every subset is open. Thus, given any open U ⊂ T , f−1(U) ⊂ S
is automatically open. Thus, f is continuous.

Question 3. The floor function f : R → R is given by f(x) = bxc, where bxcx is the largest integer less
than or equal to x.
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(a) Let a 6∈ Z. Use an ε−δ proof to show that f(x) = bxc is continuous at a.

(b) Let a ∈ Z. Show that f(x) = bxc is not continuous at a. To do so, find an ε > 0 such that for any δ > 0,
there exists an x with |x− a| < δ such that |f(x)− f(a)| ≥ ε.

Solution 3.

(a) Let a 6∈ Z. Given ε > 0, let δ = min{a− bac, ba+ 1c − a}. Since a 6∈ Z, then a 6= bac and ba+ 1c 6= a.
Tus, δ > 0. Notice that for all x satisfying |x − a| < δ, we have that f(x) = bxc = bac. Thus,
|f(x)− f(a)| = |f(a)− f(a)| = 0 < ε. Thus, f is continuous at a.

(b) Let a ∈ Z. Then, f(a) = bac = a. Let ε = 1/2. Let δ > 0 and consider a − δ/2. Since a ∈ Z, then
f(a− δ/2) < a. In particular, since f only takes on integral values, f(a)− f(a− δ/2) ≥ 1. Thus,

|f(a− δ/2)− f(a)| ≥ 1 > ε.

Thus, f is discontinuous at a.

Question 4. Let f : R→ R be a continuous function.

(a) Assume that f(x) ≥ 0 for all x ∈ [0, 1]. Show that if f(c) > 0 for some c ∈ (0, 1), then∫ 1

0

f(x) dx > 0.

(b) Show that the above is no longer true if the term “continuous” is dropped. That is, given an example
of a (necessarily discontinuous) function f : R→ R such that f(x) ≥ 0 and f(c) > 0 for some c ∈ (0, 1),
yet ∫ 1

0

f(x) dx = 0.

Solution 4.

(a) Since f is continuous, there exists a δ > 0 such that whenever |x− a| < δ, then |f(x)− f(c)| < f(c)/2.
Thus, for x satisfying |x− c| < δ (which is equivalent to −δ < x− c < δ, we have that

−f(c)

2
< f(x)− f(c) <

f(c)

2
.

Using the first inequality and adding f(c) to both sides, we get that

f(c)

2
< f(x)

for all x satisfying −δ < x− c < δ. Since this last pair of inequalities is equivalent to c− δ < x < c+ δ,

for these x, we have that
f(c)

2
< f(x). Thus,

0 <
f(c)

2
· 2δ =

∫ c+δ

c−δ

f(c)

2
dx ≤

∫ c+δ

c−δ
f(x) dx ≤

∫ 1

0

f(x) dx.
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(b) Consider the piecewise function given by

f(x) =

{
0 if x 6= 1/2
1 if x = 1/2

Then f(x) ≥ 0 and f(1/2) > 0, but
∫ 1

0
f(x) = 0.

Question 5. Recall that we can equip C([0, 1]), the space of all continuous functions on [0, 1], with its L1

metric, which is given by

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx.

Consider the function ϕ : C([0, 1])→ R given by

ϕ(f) =

∫ 1

0

f(x) dx.

In this question, we will show that ϕ is a continuous function.

(a) Show that ∣∣∣∣∫ 1

0

h(x) dx

∣∣∣∣ ≤ ∫ 1

0

|h(x)| dx.

Hint: We previously proved that −|a| ≤ a ≤ |a| for all a ∈ R.

(b) Use the above to give an ε−δ proof that ϕ is continuous.

Solution 5.

(a) Notice that for all x, −|h(x)| ≤ h(x) ≤ |h(x)|. Integrating each side, we get that

−
∫ 1

0

|h(x)| dx ≤
∫ 1

0

h(x) dx ≤
∫ 1

0

|h(x)| dx.

This is equivalent to ∣∣∣∣∫ 1

0

h(x) dx

∣∣∣∣ ≤ ∫ 1

0

|h(x)| dx.

(b) We will show that ϕ is continuous at any f ∈ C([0, 1]). Given ε > 0, let δ = ε > 0. Then, for all
g ∈ C([0, 1]) satisfying ∫ 1

0

|g(x)− f(x)| dx < δ = ε,

we can use the above fact to get that

|ϕ(g)− ϕ(f)| =
∣∣∣∣∫ 1

0

g(x) dx−
∫ 1

0

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

g(x)− f(x) dx

∣∣∣∣ ≤
∫ 1

0

|g(x)− f(x)| dx < ε.

Thus, |ϕ(g)− ϕ(f)| < ε, as desired. So, ϕ is continuous at any f ∈ C([0, 1]) and thus ϕ is a continuous
function.
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Question 7. Consider the function f : R→ R given by

f(x) =

{
x if x ∈ Q
0 if x 6∈ Q

We will show that f is continuous only at a = 0.

(a) Use an ε−δ proof to show that f(x) is continuous at a = 0.

(b) Use the theorem relating convergent sequences to continuous functions to show that if a 6= 0, then f(x)
is not continuous at a.

Solution 7.

(a) Given ε > 0, let δ = ε. We will show that for any x satisfying |x − 0| < δ, then |f(x) − f(0)| < ε. So,
let x satisfy |x| = |x− 0| < δ = ε. We take two cases: x ∈ Q or x 6∈ Q. If x ∈ Q, then f(x) = x. Thus,

|f(x)− f(0)| = |x− 0| < ε = δ.

In the second case, if x 6∈ Q, then f(x) = 0, so |f(x)− f(0)| = |0− 0| < ε. In either case, we have that
if |x− 0| < δ, then |f(x)− f(0)| < ε. Thus, f is continuous at a = 0.

(b) Let a 6= 0. We will consider the two cases: a ∈ Q or a 6∈ Q. If a ∈ Q, then, let xn be a sequence of
irrational numbers converging to a. If f were continuous at a, then f(xn) → f(a). However, for all n,
f(xn) = 0, which converges to 0. However, since a ∈ Q, f(a) = a 6= 0. Thus, f(xn) 6→ f(a). So, f is
discontinuous at a. For the second case, assume that a 6∈ Q. Then, there exists a sequence of rational
numbers xn such that xn → a. If f were continuous at a, then f(xn) → f(a). But f(xn) = xn since
xn ∈ Q. Thus, f(xn) = xn → a. However, since a 6∈ Q, f(a) = 0 6= a. Thus, f(xn) 6→ f(a). So, f is
discontinuous at a. So, at any a 6= 0, f is discontinuous at a.
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