MATH 431 - REAL ANALYSIS [
HOMEWORK DUE OCTOBER 31

In class, we learned that a function f : S — T between metric spaces (5,ds) and (T,dr) is continuous if
and only if the pre-image of every open set in T is open in S. In other words, f is continuous if for all open
U C T, the pre-image f~1(U) C S is open in S.

Question 1. Let S,T, and R be metric spaces and let f : S — T and g : T — R. We can define the
composition function go f : S — R by

go f(s) =g(f(s))-
(a) Let U C R. Show that (go f)"*(U) = f~* (¢7* (U))

(b) Use (a) to show that if f and g are continuous, then the composition g o f is also continuous

Solution 1.

(a) We will show that (g o ) Y(U) = f~* (g7 (U)) by showing that (g o f)~! (g7 (U)) and
[ (g7t (U)) C (go f)~H(U). For the first direction, let = € (go f)~1(U). Then g o f(z) € U. Thus,
g(f(z)) e U. Smce g(f( )) € U, then f(z) € g~ *(U). Continuing we get that z € f~1(¢~(U). Thus,

(go /)N U)C f (g (U)).

Conversely, assume that € f~* (¢! (U)). Then, f(z) € ¢~*(U). Furthermore, g(f(z)) € U. Thus,
gof(x) €U. So,x € (go )~ (U). So, f (971 (U)) C (go f)~'(U).

Thus, (go f)~'(U) = f~ (g7 (U)).

(b) Let U be open in R. Since g is continuous, then g=(U) C T is open. Since f is continuous, f~(¢g=1(U))
is open. Thus, by (a), (go f)~!(U) is open. So, g o f is continuous.

Question 2. Let (S,dg) and (T, dr) be metric spaces and let f: S — T.
(a) A function is called constant if f(s) = to for all s € S. Show that any constant function is continuous.

(b) Show that if dg is the discrete metric, then any function f is continuous.

Solution 2.

(a) Let U be an open set in T'. We will show that f~1(U) is open. We do so in two cases: to € U and to & U.
If tg € U, then since f(s) = to for all s € S, f~1(U) = S, which is always open in S. If tqg & U, then
f~Y(U) = @, which is open. In either case, the pre-image of every open set is open. So the constant
function f is continuous.

(b) Recall that in a discrete metric space, every subset is open. Thus, given any open U C T, f~1(U) C S
is automatically open. Thus, f is continuous.

Question 3. The floor function f : R — R is given by f(x) = |z], where |x]x is the largest integer less
than or equal to x.



(a) Let a ¢ Z. Use an €—4 proof to show that f(x) = |z] is continuous at a.

(b) Let a € Z. Show that f(x) = |z] is not continuous at a. To do so, find an € > 0 such that for any ¢ > 0,
there exists an = with | — a| < § such that |f(z) — f(a)| > e.

Solution 3.

(a) Let a € Z. Given € > 0, let 6 = min{a — |a], |a + 1] — a}. Since a € Z, then a # |a] and |a + 1| # a.
Tus, § > 0. Notice that for all x satisfying |z — a| < J, we have that f(z) = |z| = |a]. Thus,
|f(z) — f(a)] = |f(a) — f(a)] = 0 < e. Thus, f is continuous at a.

(b) Let @ € Z. Then, f(a) = |a] = a. Let € = 1/2. Let § > 0 and consider a — §/2. Since a € Z, then
fla—46/2) < a. In particular, since f only takes on integral values, f(a) — f(a — 6/2) > 1. Thus,

[fla=6/2) = f(a)| =1 >e.

Thus, f is discontinuous at a.

Question 4. Let f : R — R be a continuous function.

(a) Assume that f(z) > 0 for all z € [0,1]. Show that if f(c) > 0 for some ¢ € (0, 1), then
1
/ f(z)dz > 0.
0

(b) Show that the above is no longer true if the term “continuous” is dropped. That is, given an example
of a (necessarily discontinuous) function f : R — R such that f(x) > 0 and f(c) > 0 for some ¢ € (0, 1),
yet

/Olf(x)dxzo.

Solution 4.

(a) Since f is continuous, there exists a ¢ > 0 such that whenever |z — a| < ¢, then |f(z) — f(c)| < f(e)/2.
Thus, for z satisfying |z — ¢| < § (which is equivalent to —6 < 2 — ¢ < §, we have that

)

< @) - f0 <

Using the first inequality and adding f(c) to both sides, we get that

f(c)
N < f(z)

for all x satisfying —6 < & — ¢ < 4. Since this last pair of inequalities is equivalent to ¢ — § < x < ¢+ 6,

for these z, we have that @ < f(z). Thus,

c+6 c+6 1
0<f(20>.25:/cz f(;)dxﬁ/cz f(x)dxé/0 f(z) dz.




(b) Consider the piecewise function given by

[0 ifx#1)2
f(“”)_{1 if 2 =1/2

Then f(x) > 0 and f(1/2) > 0, but [, f(z) = 0.

Question 5. Recall that we can equip C([0, 1]), the space of all continuous functions on [0, 1], with its L!
metric, which is given by
/ 7(@) ~ g(a)| de.

Consider the function ¢ : C([0,1]) — R given by
1
= / f(x)dx
0

In this question, we will show that ¢ is a continuous function.

< / ' |h)) de.

Hint: We previously proved that —|a| < a <|a| for all a € R.

(a) Show that
x) dx

(b) Use the above to give an € —d proof that ¢ is continuous.

Solution 5.

(a) Notice that for all z, —|h(z)| < h(z) < |h(z)|. Integrating each side, we get that

_/01|h(x)|dx§/01h(x)dx§/01h(z)|d:z:.

/01 h(z)dz| < /01 |h(z)| dx.

(b) We will show that ¢ is continuous at any f € C([0,1]). Given € > 0, let 6 = € > 0. Then, for all
g € C([0,1]) satisfying
/ lg(x x)|dr <6 =c¢,

we can use the above fact to get that

o |—]/ d:c—/f
/|g 7)) dz < <.

Thus, |p(g9) — ¢(f)| < e, as desired. So, ¢ is continuous at any f € C([0,1]) and thus ¢ is a continuous
function.

This is equivalent to




Question 7. Consider the function f: R — R given by

r ifze@Q
f(x):{ 0 ifrgQ

We will show that f is continuous only at a = 0.

(a) Use an €—4 proof to show that f(x) is continuous at a = 0.

(b) Use the theorem relating convergent sequences to continuous functions to show that if a # 0, then f(x)
is not continuous at a.

Solution 7.

(a) Given € > 0, let 6 = . We will show that for any z satisfying |x — 0| < 4, then |f(x) — f(0)] < e. So,
let x satisfy |z| = |z — 0] < § = . We take two cases: x € Q or x € Q. If z € Q, then f(x) = z. Thus,

[f(x) = f(0)| = |z = 0] <& =0

In the second case, if x ¢ Q, then f(z) =0, so |f(x) — f(0)| = |0 — 0| < e. In either case, we have that
if |z — 0] < 4, then |f(x) — f(0)] < e. Thus, f is continuous at a = 0.

(b) Let a # 0. We will consider the two cases: a € Q or a ¢ Q. If a € Q, then, let x,, be a sequence of
irrational numbers converging to a. If f were continuous at a, then f(z,) — f(a). However, for all n,
f(x,) = 0, which converges to 0. However, since a € Q, f(a) = a # 0. Thus, f(z,) /4 f(a). So, f is
discontinuous at a. For the second case, assume that a ¢ Q. Then, there exists a sequence of rational
numbers x, such that z,, — a. If f were continuous at a, then f(z,) — f(a). But f(z,) = x, since
xn € Q. Thus, f(z,) = z, — a. However, since a € Q, f(a) = 0 # a. Thus, f(z,) # f(a). So, fis
discontinuous at a. So, at any a # 0, f is discontinuous at a.



