
Math 431 - Real Analysis I
Solutions to Homework due October 22

Question 1. Sequences are frequently given recursively, where a beginning term x1 is specified and subse-
quent terms can be found using a recursive relation. One such example is the sequence defined by x1 = 1
and

xn+1 =
√

2 + xn.

(a) For n = 1, 2, . . . , 10, compute xn. A calculator may be helpful.

(b) Show that xn is a monotone increasing sequence. A proof by induction might be easiest.

(c) Show that the sequence xn is bounded below by 1 and above by 2.

(d) Use (b) and (c) to conclude that xn converges.

Solution 1.

(a)
n xn

1 1
2 1.41421
3 1.84776
4 1.96157
5 1.99036
6 1.99759
7 1.99939
8 1.99985
9 1.99996
10 1.99999

(b) Let A(n) be the statement that xn+1 ≥ xn. We will show that A(n) is true for all n ≥ 1. First, note
that x1 = 1 <

√
3 = x2. Thus, A(1) holds true. Now, assume that A(k) is true. We will show that

A(k + 1) is true. Thus, we will show that xk+2 ≥ xk+1. Notice that since A(k) is true, then xk+1 ≥ xk.
Thus, 2 + xk+1 ≥ 2 + xk+2. Thus,

xk+2 =
√

2 + xk+1 ≥
√

2 + xk = xk+1.

Thus, A(k + 1) is true. So, by induction, A(n) is true for all n.

(c) First, note that since x1 = 1 and that xn is monotone increasing, then xn ≥ 1 for all n. For the other
bound, we will use induction on the statement A(n) given by xn ≤ 2 for n ≥ 1. For the base case, notice
that x1 = 1 < 2. Thus, A(1) holds. Now, assume that A(k) holds. WE will show that A(k + 1) is true.
Since A(k) is true, then xk ≤ 2. Thus,

xk+1 =
√

2 + xk ≤
√

2 + 2 = 2.

Thus, A(k + 1) is true. So, by induction, xk is bounded above by 2.

(d) By (b) and (c), xn is a bounded, monotone sequence; thus, by a theorem in class, it converges.

Question 2. One very important class of sequences are series, in which we add up the terms of a given
sequence. One such example is the following sequence:

Sn =

n∑
k=0

1

k!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
.
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(a) For n = 0, 1, 2, . . . , 6, compute Sn. Again, a calculator may be helpful; be sure to use several digits.

(b) Show that Sn is monotone increasing.

(c) Use induction to show that for all n ≥ 1, n! ≥ 2n−1.

(d) Use (c) to show that

Sn ≤ 1 +

n∑
k=1

1

2k−1
.

(e) Use well-known facts from Calculus II and the geometric series to show that

1 +

n∑
k=1

1

2k−1
< 3.

(f) Use (b), (d), and (e) to conclude that Sn converges.

Solution 2.

(a)
n Sn

0 1
1 2
2 2.5
3 2.66666
4 2.708333
5 2.7166666
6 2.7180555

(b) Since 1/n! > 0, then

Sn+1 = Sn +
1

(n+ 1)!
≥ Sn.

Thus, Sn is monotone increasing.

(c) Let A(n) be the statement that n! > 2n−1. We will show that A(n) is true for all n ≥ 1. For the base
case, notice that 1! = 1 ≥ 1 = 21−1. Thus, A(1) is true. Assume that A(k) holds. Thus, k! > 2k−1. We
will show that A(k + 1) is true by showing that (k + 1)! < 2k. Notice that

(k + 1)! = (k + 1) · k! ≥ (k + 1) · 2k−1.

Since k ≥ 1, then k + 1 ≥ 2. So, (k + 1)2k−1 ≥ 2 · 2k−1 = 2k. Thus, A(k + 1) is true. So, n! ≥ 2n−1 for
all n ≥ 1.

(d) Since n! ≥ 2n−1, then we have that
1

2n−1
≥ 1

n!
for all n ≥ 1. Comparing term-by-term, we have that

n∑
k=1

1

k!
≤

n∑
k=1

1

2k−1
.

Since 1
0! = 1, we have that

Sn =

n∑
k=0

1

k!
≤ 1 +

n∑
k=1

1

2k−1
.
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(e) From Calculus II, we recognize
n∑

k=1

1

2k−1
=

n−1∑
j=0

1

2j
=

n−1∑
j=0

(
1

2

)j

as a geometric series. Thus,
n−1∑
j=0

(
1

2

)j

=
1−

(
1
2

)n
1− 1

2

<
1

1− 1
2

= 2.

Thus,

1 +

n∑
k=1

1

2k−1
< 1 + 2 = 3.

(f) By (b), Sn is a monotone sequence. By (d) and (e), we have that Sn < 3 and is thus bounded. Thus,
since every bounded monotone sequence converges, Sn converges.

(g)

Question 3. In class, we learned that a sequence in Rk is convergent if and only if it is Cauchy. We have
previously proven using the definition of convergence that the sequence

xn =
1

n

converges (to 0). Thus, it should also be Cauchy. In this problem, we will prove directly that it is Cauchy.

(a) Let n,m ∈ Z+. Show that ∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

n
+

1

m
.

(b) Use (a) to show that xn = 1
n is a Cauchy sequence. To do so, given an ε > 0, find an N such that for

all n,m > N , ∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

n
+

1

m
< ε.

Solution 3.

(a) We will show this inequality by showing that

− 1

n
− 1

m
<

1

n
− 1

m
<

1

n
+

1

m
.

For the second inequality, notice that since
−1

m
<

1

m
, then

1

n
− 1

m
<

1

n
+

1

m
.

Similarly, it’s clear that
−1

n
<

1

n
,, so we get that

− 1

n
− 1

m
<

1

n
− 1

m
.

Combining this gives the two inequalities, which is equivalent to∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

n
+

1

m
.
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(b) Let ε > 0. By the Archimedean principle, there exists an N such that N
ε

2
> 1. Thus,

1

N
<
ε

2
. Thus,

for all n,m > N , we have that
1

n
,

1

m
<

1

N
<
ε

2
.

Thus, by (a),

|xn − xm| =
∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

n
+

1

m
<
ε

2
+
ε

2
= ε.

Thus, xn =
1

n
is a Cauchy sequence.

Question 4. Consider the sequence of partial sums given by

Sn =

n∑
k=1

1

k2
.

We will show that Sn converges by showing it is Cauchy.

(a) If n,m ∈ Z+ with m > n, show that

|Sm − Sn| =
m∑

k=n+1

1

k2
.

(b) Show that
1

k2
<

1

k(k − 1)
for k ≥ 2.

(c) Show that
m∑

k=n+1

1

k(k − 1)
=

1

n
− 1

m
.

As a hint, think about telescoping series from Calculus II.

(d) Use the above to show that

|Sm − Sn| <
1

m
+

1

n
.

(e) Use (d) in a proof to show that Sn is Cauchy and thus converges.

Solution 4.

(a) Since all the terms in the sum are positive and m > n, then |Sm−Sn| = Sm−Sn. The terms in Sm−Sn

are those terms up to m excluding the first n. Thus, we have that

|Sm − Sn| =
m∑

k=n+1

1

k2
.

(b) Notice that k(k − 1) = k2 − k < k2. Since all terms are positive, we can cross-divide to get

1

k2
<

1

k(k − 1)
.
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(c) Notice that
1

k(k − 1)
=

1

k
− 1

k − 1
.

Thus, when adding up the terms in

m∑
k=n+1

1

k(k − 1)
=

m∑
k=n+1

1

k
− 1

k − 1
,

all cancel except for the term
1

n
and − 1

m
. Thus,

m∑
k=n+1

1

k(k − 1)
=

1

n
− 1

m
.

(d) Putting the above together, we have that

|Sm − Sn| =
m∑

k=n+1

1

k2
<

m∑
k=n+1

1

k(k − 1)
=

1

m
− 1

n
<

1

m
+

1

n
.

(e) Let ε > 0. By the Archimedean property, there exists an N ∈ Z+ such that N
ε

2
> 1. Thus,

1

N
<
ε

2
.

Question 5. Let f, g : R→ R with a, L,M, k ∈ R. Furthermore, assume that

lim
x→a

f(x) = L and lim
x→a

g(x) = M.

Give an ε−δ proof to show the following:

(a) lim
x→a

k · f(x) = k · L

(b) lim
x→a

f(x) + g(x) = L+M

Solution 5.

(a) We will prove this in cases: k = 0 or k 6= 0.

In the first case, if k = 0, then we wish to prove that k · f(x) = 0, the zero function, has limit 0. So,
given ε > 0, let δ = 1 (or any other positive number, really). Thus, for all 0 < |x− a| < δ, we have that

|k · f(x)− kL| = |0− 0| = 0 < ε.

Thus, lim
x→a

k · f(x) = k · L.

Next, assume that k 6= 0. Let ε > 0. Since limx→a f(x) = L, there exists a δ such that for all x satisfying
0 < |x− a| < δ,

|f(x)− L| < ε

|k|
.

Thus, |k| · |f(x)− L| < ε and thus |k · f(x)− k · L| < ε. So lim
x→a

k · f(x) = k · L.
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(b) Let ε > 0. Since lim
x→a

f(x) = L, there exists a δf > 0 such that for all x satisfying 0 < |x − a| < δf , we

have
|f(x)− L| < ε

2
.

Similarly, since lim
x→a

g(x) = M , there exists a δg > 0 such that for all x satisfying 0 < |x − a| < δg, we

have
|g(x)−M | < ε

2
.

Choose δ = min{δf , δg} > 0. Then, for all x satisfying 0 < |x− a| < δ, we have that

|(f(x) + g(x))− (L+M)| = |f(x)− L+ g(x)−M | ≤ |f(x)− L|+ |g(x)−M | < ε

2
+
ε

2
= ε.

Thus,
lim
x→a

f(x) + g(x) = L+M.
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