MATH 431 - REAL ANALYSIS [
SOLUTIONS TO HOMEWORK DUE OCTOBER 22

Question 1. Sequences are frequently given recursively, where a beginning term x; is specified and subse-
quent terms can be found using a recursive relation. One such example is the sequence defined by z; = 1

and
Tntl = V2+ Ty

For n=1,2,...,10, compute z,. A calculator may be helpful.

(a)
(b) Show that z,, is a monotone increasing sequence. A proof by induction might be easiest.
(c) Show that the sequence z,, is bounded below by 1 and above by 2.

)

(d) Use (b) and (c) to conclude that x,, converges.

Solution 1.

(a)
1
141421
184776
196157
1.99036
1.99759
1.99939
1.99985
1.99996
1.99999

O 00| | O U x| W| DN —

—
o

(b) Let A(n) be the statement that x,11 > x,. We will show that A(n) is true for all n > 1. First, note
that 27 = 1 < v/3 = x5. Thus, A(1) holds true. Now, assume that A(k) is true. We will show that
A(k +1) is true. Thus, we will show that zj42 > z41. Notice that since A(k) is true, then xp4q1 > xg.
Thus, 2 + k41 > 2 + xp4o. Thus,

Thro = /2 + Tp1 > V2 + T = Tipa.
Thus, A(k + 1) is true. So, by induction, A(n) is true for all n.

(¢) First, note that since 1 = 1 and that x,, is monotone increasing, then x,, > 1 for all n. For the other
bound, we will use induction on the statement A(n) given by z,, < 2 for n > 1. For the base case, notice
that z1 = 1 < 2. Thus, A(1) holds. Now, assume that A(k) holds. WE will show that A(k + 1) is true.

Since A(k) is true, then z; < 2. Thus,

Tpy1 = \/2+£L’k<\/2+2:2
Thus, A(k 4 1) is true. So, by induction, zj is bounded above by 2

(d) By (b) and (c), z,, is a bounded, monotone sequence; thus, by a theorem in class, it converges.

Question 2. One very important class of sequences are series, in which we add up the terms of a given
sequence. One such example is the following sequence:

il +1+1+1+ 41
k! 21 3! n!’



(a) Forn=0,1,2,...,6, compute S,,. Again, a calculator may be helpful; be sure to use several digits.
(b
(c

(d) Use (¢) to show that

Show that S, is monotone increasing.

Use induction to show that for all n > 1, n! > 27~

)
)
)
)

(e) Use well-known facts from Calculus IT and the geometric series to show that
|
k=1

(f) Use (b), (d), and (e) to conclude that S,, converges.

Solution 2.

(a)

1

0

1

2 2.5
3| 2.66666
4

)

6

2.708333
2.7166666
2.7180555

(b) Since 1/n! > 0, then

Thus, S,, is monotone increasing.

(c) Let A(n) be the statement that n! > 2"~1. We will show that A(n) is true for all n > 1. For the base
case, notice that 1! =1 > 1 = 2!~!. Thus, A(1) is true. Assume that A(k) holds. Thus, k! > 2F~1. We

will show that A(k + 1) is true by showing that (k + 1)! < 2*. Notice that

(k+1)!=(k+1)-k>(k+1)-281

Since k > 1, then k +1 > 2. So, (k+ 1)2F71 > 2.2k=1 = 9k Thus, A(k + 1) is true. So, n! > 277! for

all n > 1.

1 1
(d) Since n! > 2"~1 then we have that o1 >~ for all n > 1. Comparing term-by-term, we have that
n- n!
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Since g; = 1, we have that

n
3
I
o
Il
o
=
IN
—
+
bl
Il M:
oL
[\
T =
N



(e) From Calculus II, we recognize

3
—

as a geometric series. Thus,

Thus,

(f) By (b), S, is a monotone sequence. By (d) and (e), we have that S, < 3 and is thus bounded. Thus,
since every bounded monotone sequence converges, S, converges.

(2)

Question 3. In class, we learned that a sequence in R is convergent if and only if it is Cauchy. We have
previously proven using the definition of convergence that the sequence

1
Ty = —
n

converges (to 0). Thus, it should also be Cauchy. In this problem, we will prove directly that it is Cauchy.

(a) Let n,m € Z. Show that
1 1 1

1
n m| n m

(b) Use (a) to show that z,, = L is a Cauchy sequence. To do so, given an & > 0, find an N such that for
all n,m > N,

1 1 1 1

———|<-+=<e

n m| n m

Solution 3.

(a) We will show this inequality by showing that
1 1

n m

1 1

1 1
n m n m

-1
For the second inequality, notice that since — < —, then
m m

1
<ot
n m n m

-1 1
Similarly, it’s clear that — < —,, so we get that
n n

Combining this gives the two inequalities, which is equivalent to

1 1 1 1
< =+ —.

n m n m




1
(b) Let € > 0. By the Archimedean principle, there exists an N such that N% > 1. Thus, N <

for all n,m > N, we have that

. Thus,

N ™

1 1<1<€
n"m N 2
Thus, by (a),
1 1 1 1 € €
|Tp —Tm|=|-——|< -+ =<+ 5=¢.
n o m no o m 2 2

1
Thus, x, = — is a Cauchy sequence.
n

Question 4. Consider the sequence of partial sums given by
n
1
k=1
We will show that S,, converges by showing it is Cauchy.
(a) If n,m € Z4 with m > n, show that

UL
S = Sl = =
k=n-+1

(b) Show that !

1
LA )
2SS kk—D 7

(¢) Show that
f:gj;f_l_l
= k(k—1) n m
As a hint, think about telescoping series from Calculus II.

(d) Use the above to show that

1 1
|Sm — Snl < — 4+ —.
m n

(e) Use (d) in a proof to show that S,, is Cauchy and thus converges.

Solution 4.

(a) Since all the terms in the sum are positive and m > n, then |S,, — S| = Sy, —Sn. The terms in S, — Sy,
are those terms up to m excluding the first n. Thus, we have that

S = Sl = Y %

(b) Notice that k(k — 1) = k? — k < k2. Since all terms are positive, we can cross-divide to get

o1
2 k(k—1)



(¢) Notice that

Thus, when adding up the terms in

i 1 T 1
k_z k(k—1) _Z k k-1
=n+1 k=n+1

1 1
all cancel except for the term — and ——. Thus,
n m

m

y L 1.1
:+1k(k—1) n m

(d) Putting the above together, we have that

m

1 - 1 11 1
Sn=Sul= > < X WD m n m T
k=n-+1 k=n+1

s |-

e) Let ¢ > 0. By the Archimedean property, there exists an N € Z such that NE > 1. Thus,
(e) y property. + 5

! <
N

| ™

Question 5. Let f,¢g: R — R with a, L, M,k € R. Furthermore, assume that

lim f(z) =L and lim g(z)= M.

T—ra T—ra

Give an €—¢ proof to show the following:

(a) imk- f(z)=k-L

r—a

(b) lim f(z) +g(z) =L+ M

r—a

Solution 5.

(a) We will prove this in cases: k =0 or k # 0.
In the first case, if & = 0, then we wish to prove that k- f(x) = 0, the zero function, has limit 0. So,
given € > 0, let 6 = 1 (or any other positive number, really). Thus, for all 0 < |z — a| < §, we have that
|k f(x) —kL|=|10—-0]=0<e.
Thus, lim k- f(z) =k - L.
r—a
Next, assume that k # 0. Let € > 0. Since lim,_,, f(x) = L, there exists a ¢ such that for all  satisfying
0<|x—al <d,
<
||
Thus, |k| - |f(z) — L| < € and thus |k - f(z) — k- L] <e. So 11_I>nk;f(x) =k- L.

[f(z) = L] <



(b) Let e > 0. Since 1i_r)n f(z) = L, there exists a §; > 0 such that for all = satisfying 0 < |z — a| < dy, we
have

9
f@)— L < 2.

Similarly, since lim g(z) = M, there exists a d, > 0 such that for all = satisfying 0 < |z — a| < d4, we
r—a

have

g
lg(a) — M| < <.

Choose § = min{dy, d,} > 0. Then, for all z satisfying 0 < |z — a| < §, we have that

[(f(@) + g(2)) = (L+M)| = |f(@) = L+ g(x) = M| < [f(2) = L] + |g(a) = M| < S+ = = <.
Thus,

lim f(x) 4+ g(x) = L+ M.

r—a



