Math 431 - Real Analysis I Solutions to Homework due October 22

Question 1. Sequences are frequently given recursively, where a beginning term x_{1} is specified and subsequent terms can be found using a recursive relation. One such example is the sequence defined by $x_{1}=1$ and

$$
x_{n+1}=\sqrt{2+x_{n}} .
$$

(a) For $n=1,2, \ldots, 10$, compute x_{n}. A calculator may be helpful.
(b) Show that x_{n} is a monotone increasing sequence. A proof by induction might be easiest.
(c) Show that the sequence x_{n} is bounded below by 1 and above by 2 .
(d) Use (b) and (c) to conclude that x_{n} converges.

Solution 1.

(a)

n	x_{n}
1	1
2	1.41421
3	1.84776
4	1.96157
5	1.99036
6	1.99759
7	1.99939
8	1.99985
9	1.99996
10	1.99999

(b) Let $A(n)$ be the statement that $x_{n+1} \geq x_{n}$. We will show that $A(n)$ is true for all $n \geq 1$. First, note that $x_{1}=1<\sqrt{3}=x_{2}$. Thus, $A(1)$ holds true. Now, assume that $A(k)$ is true. We will show that $A(k+1)$ is true. Thus, we will show that $x_{k+2} \geq x_{k+1}$. Notice that since $A(k)$ is true, then $x_{k+1} \geq x_{k}$. Thus, $2+x_{k+1} \geq 2+x_{k+2}$. Thus,

$$
x_{k+2}=\sqrt{2+x_{k+1}} \geq \sqrt{2+x_{k}}=x_{k+1}
$$

Thus, $A(k+1)$ is true. So, by induction, $A(n)$ is true for all n.
(c) First, note that since $x_{1}=1$ and that x_{n} is monotone increasing, then $x_{n} \geq 1$ for all n. For the other bound, we will use induction on the statement $A(n)$ given by $x_{n} \leq 2$ for $n \geq 1$. For the base case, notice that $x_{1}=1<2$. Thus, $A(1)$ holds. Now, assume that $A(k)$ holds. WE will show that $A(k+1)$ is true. Since $A(k)$ is true, then $x_{k} \leq 2$. Thus,

$$
x_{k+1}=\sqrt{2+x_{k}} \leq \sqrt{2+2}=2
$$

Thus, $A(k+1)$ is true. So, by induction, x_{k} is bounded above by 2.
(d) By (b) and (c), x_{n} is a bounded, monotone sequence; thus, by a theorem in class, it converges.

Question 2. One very important class of sequences are series, in which we add up the terms of a given sequence. One such example is the following sequence:

$$
S_{n}=\sum_{k=0}^{n} \frac{1}{k!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
$$

(a) For $n=0,1,2, \ldots, 6$, compute S_{n}. Again, a calculator may be helpful; be sure to use several digits.
(b) Show that S_{n} is monotone increasing.
(c) Use induction to show that for all $n \geq 1, n$! $\geq 2^{n-1}$.
(d) Use (c) to show that

$$
S_{n} \leq 1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}
$$

(e) Use well-known facts from Calculus II and the geometric series to show that

$$
1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}<3
$$

(f) Use (b), (d), and (e) to conclude that S_{n} converges.

Solution 2.

(a)

n	S_{n}
0	1
1	2
2	2.5
3	2.66666
4	2.708333
5	2.7166666
6	2.7180555

(b) Since $1 / n$! >0, then

$$
S_{n+1}=S_{n}+\frac{1}{(n+1)!} \geq S_{n}
$$

Thus, S_{n} is monotone increasing.
(c) Let $A(n)$ be the statement that $n!>2^{n-1}$. We will show that $A(n)$ is true for all $n \geq 1$. For the base case, notice that $1!=1 \geq 1=2^{1-1}$. Thus, $A(1)$ is true. Assume that $A(k)$ holds. Thus, $k!>2^{k-1}$. We will show that $A(k+1)$ is true by showing that $(k+1)!<2^{k}$. Notice that

$$
(k+1)!=(k+1) \cdot k!\geq(k+1) \cdot 2^{k-1} .
$$

Since $k \geq 1$, then $k+1 \geq 2$. So, $(k+1) 2^{k-1} \geq 2 \cdot 2^{k-1}=2^{k}$. Thus, $A(k+1)$ is true. So, $n!\geq 2^{n-1}$ for all $n \geq 1$.
(d) Since $n!\geq 2^{n-1}$, then we have that $\frac{1}{2^{n-1}} \geq \frac{1}{n!}$ for all $n \geq 1$. Comparing term-by-term, we have that

$$
\sum_{k=1}^{n} \frac{1}{k!} \leq \sum_{k=1}^{n} \frac{1}{2^{k-1}}
$$

Since $\frac{1}{0!}=1$, we have that

$$
S_{n}=\sum_{k=0}^{n} \frac{1}{k!} \leq 1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}
$$

(e) From Calculus II, we recognize

$$
\sum_{k=1}^{n} \frac{1}{2^{k-1}}=\sum_{j=0}^{n-1} \frac{1}{2^{j}}=\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{j}
$$

as a geometric series. Thus,

$$
\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{j}=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}<\frac{1}{1-\frac{1}{2}}=2 .
$$

Thus,

$$
1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}<1+2=3 .
$$

(f) By (b), S_{n} is a monotone sequence. By (d) and (e), we have that $S_{n}<3$ and is thus bounded. Thus, since every bounded monotone sequence converges, S_{n} converges.
(g)

Question 3. In class, we learned that a sequence in \mathbb{R}^{k} is convergent if and only if it is Cauchy. We have previously proven using the definition of convergence that the sequence

$$
x_{n}=\frac{1}{n}
$$

converges (to 0). Thus, it should also be Cauchy. In this problem, we will prove directly that it is Cauchy.
(a) Let $n, m \in \mathbb{Z}_{+}$. Show that

$$
\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m}
$$

(b) Use (a) to show that $x_{n}=\frac{1}{n}$ is a Cauchy sequence. To do so, given an $\varepsilon>0$, find an N such that for all $n, m>N$,

$$
\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m}<\varepsilon .
$$

Solution 3.

(a) We will show this inequality by showing that

$$
-\frac{1}{n}-\frac{1}{m}<\frac{1}{n}-\frac{1}{m}<\frac{1}{n}+\frac{1}{m} .
$$

For the second inequality, notice that since $\frac{-1}{m}<\frac{1}{m}$, then

$$
\frac{1}{n}-\frac{1}{m}<\frac{1}{n}+\frac{1}{m} .
$$

Similarly, it's clear that $\frac{-1}{n}<\frac{1}{n}$, so we get that

$$
-\frac{1}{n}-\frac{1}{m}<\frac{1}{n}-\frac{1}{m} .
$$

Combining this gives the two inequalities, which is equivalent to

$$
\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m} .
$$

(b) Let $\varepsilon>0$. By the Archimedean principle, there exists an N such that $N \frac{\varepsilon}{2}>1$. Thus, $\frac{1}{N}<\frac{\varepsilon}{2}$. Thus, for all $n, m>N$, we have that

$$
\frac{1}{n}, \frac{1}{m}<\frac{1}{N}<\frac{\varepsilon}{2}
$$

Thus, by (a),

$$
\left|x_{n}-x_{m}\right|=\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Thus, $x_{n}=\frac{1}{n}$ is a Cauchy sequence.

Question 4. Consider the sequence of partial sums given by

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

We will show that S_{n} converges by showing it is Cauchy.
(a) If $n, m \in \mathbb{Z}_{+}$with $m>n$, show that

$$
\left|S_{m}-S_{n}\right|=\sum_{k=n+1}^{m} \frac{1}{k^{2}}
$$

(b) Show that $\frac{1}{k^{2}}<\frac{1}{k(k-1)}$ for $k \geq 2$.
(c) Show that

$$
\sum_{k=n+1}^{m} \frac{1}{k(k-1)}=\frac{1}{n}-\frac{1}{m}
$$

As a hint, think about telescoping series from Calculus II.
(d) Use the above to show that

$$
\left|S_{m}-S_{n}\right|<\frac{1}{m}+\frac{1}{n}
$$

(e) Use (d) in a proof to show that S_{n} is Cauchy and thus converges.

Solution 4.

(a) Since all the terms in the sum are positive and $m>n$, then $\left|S_{m}-S_{n}\right|=S_{m}-S_{n}$. The terms in $S_{m}-S_{n}$ are those terms up to m excluding the first n. Thus, we have that

$$
\left|S_{m}-S_{n}\right|=\sum_{k=n+1}^{m} \frac{1}{k^{2}}
$$

(b) Notice that $k(k-1)=k^{2}-k<k^{2}$. Since all terms are positive, we can cross-divide to get

$$
\frac{1}{k^{2}}<\frac{1}{k(k-1)}
$$

(c) Notice that

$$
\frac{1}{k(k-1)}=\frac{1}{k}-\frac{1}{k-1}
$$

Thus, when adding up the terms in

$$
\sum_{k=n+1}^{m} \frac{1}{k(k-1)}=\sum_{k=n+1}^{m} \frac{1}{k}-\frac{1}{k-1}
$$

all cancel except for the term $\frac{1}{n}$ and $-\frac{1}{m}$. Thus,

$$
\sum_{k=n+1}^{m} \frac{1}{k(k-1)}=\frac{1}{n}-\frac{1}{m}
$$

(d) Putting the above together, we have that

$$
\left|S_{m}-S_{n}\right|=\sum_{k=n+1}^{m} \frac{1}{k^{2}}<\sum_{k=n+1}^{m} \frac{1}{k(k-1)}=\frac{1}{m}-\frac{1}{n}<\frac{1}{m}+\frac{1}{n}
$$

(e) Let $\varepsilon>0$. By the Archimedean property, there exists an $N \in \mathbb{Z}_{+}$such that $N \frac{\varepsilon}{2}>1$. Thus,

$$
\frac{1}{N}<\frac{\varepsilon}{2}
$$

Question 5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ with $a, L, M, k \in \mathbb{R}$. Furthermore, assume that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

Give an $\varepsilon-\delta$ proof to show the following:
(a) $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot L$
(b) $\lim _{x \rightarrow a} f(x)+g(x)=L+M$

Solution 5.

(a) We will prove this in cases: $k=0$ or $k \neq 0$.

In the first case, if $k=0$, then we wish to prove that $k \cdot f(x)=0$, the zero function, has limit 0 . So, given $\varepsilon>0$, let $\delta=1$ (or any other positive number, really). Thus, for all $0<|x-a|<\delta$, we have that

$$
|k \cdot f(x)-k L|=|0-0|=0<\varepsilon
$$

Thus, $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot L$.
Next, assume that $k \neq 0$. Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists a δ such that for all x satisfying $0<|x-a|<\delta$,

$$
|f(x)-L|<\frac{\varepsilon}{|k|}
$$

Thus, $|k| \cdot|f(x)-L|<\varepsilon$ and thus $|k \cdot f(x)-k \cdot L|<\varepsilon$. So $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot L$.
(b) Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists a $\delta_{f}>0$ such that for all x satisfying $0<|x-a|<\delta_{f}$, we have

$$
|f(x)-L|<\frac{\varepsilon}{2}
$$

Similarly, since $\lim _{x \rightarrow a} g(x)=M$, there exists a $\delta_{g}>0$ such that for all x satisfying $0<|x-a|<\delta_{g}$, we have

$$
|g(x)-M|<\frac{\varepsilon}{2}
$$

Choose $\delta=\min \left\{\delta_{f}, \delta_{g}\right\}>0$. Then, for all x satisfying $0<|x-a|<\delta$, we have that

$$
|(f(x)+g(x))-(L+M)|=|f(x)-L+g(x)-M| \leq|f(x)-L|+|g(x)-M|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Thus,

$$
\lim _{x \rightarrow a} f(x)+g(x)=L+M
$$

